首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

2.
The aim of this investigation was to evaluate if chronic leptin administration corrects high fat diet-induced skeletal muscle insulin resistance, in part, by enhancing rates of glucose disposal and if the improvements are accounted for by alterations in components of the insulin-signaling cascade. Sprague-Dawley rats consumed normal (CON) or high fat diets for three months. After the dietary lead in, the high fat diet group was further subdivided into high fat (HF) and high fat, leptin treated (HF-LEP) animals. HF-LEP animals were injected twice daily with leptin (5 mg/100 g body weight) for 10 days, while the CON and HF animals were injected with vehicle. Following the treatment periods, all animals were prepared for and subjected to hind limb perfusion. The high fat diet decreased rates of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis in the red gastrocnemius (RG), but did not affect glycogen synthase activity, rates of glucose oxidation or nonoxidative disposal of glucose. Of interest, IRS-1-associated PI3-K activity and total GLUT4 protein concentration were reduced in the RG of the high fat-fed animals. Leptin treatment increased rates of insulin-stimulated glucose uptake and glucose oxidation, and normalized rates of glycogen synthesis. Leptin appeared to mediate these effects by normalizing insulin-stimulated PI3-K activation and GLUT4 protein concentration in the RG. Collectively, these data suggest that chronic leptin treatment reverses the effects of a high fat diet thereby allowing the insulin signaling cascade and glucose transport effector system to be fully activated which in turn affects the amount of glucose that is transported across the plasma membrane and made available for glycogen synthesis.  相似文献   

3.
Leptin administration increases fatty acid (FA) oxidation rates and decreases lipid storage in oxidative skeletal muscle, thereby improving insulin response. We have previously shown high-fat (HF) diets to rapidly induce skeletal muscle leptin resistance, prior to the disruption of normal muscle FA metabolism (increase in FA transport; accumulation of triacylglycerol, diacylglycerol, ceramide) that occurs in advance of impaired insulin signaling and glucose transport. All of this occurs within a 4-wk period. Conversely, exercise can rapidly improve insulin response, in as little as one exercise bout. Thus, if the early development of leptin resistance is a contributor to HF diet-induced insulin resistance (IR) in skeletal muscle, then it is logical to predict that the rapid restoration of insulin response by exercise training would be preceded by the recovery of leptin response. In the current study, we sought to determine 1) whether 1, 2, or 4 wk of exercise training was sufficient to restore leptin response in isolated soleus muscle of rats already consuming a HF diet (60% kcal), and 2) whether this preceded the training-induced corrections in FA metabolism and improved insulin-stimulated glucose transport. In the low-fat (LF)-fed control group, insulin increased glucose transport by 153% and leptin increased AMPK and ACC phosphorylation and the rate of palmitate oxidation (+73%). These responses to insulin and leptin were either severely blunted or absent following 4 wk of HF feeding. Exercise intervention decreased muscle ceramide content (-28%) and restored insulin-stimulated glucose transport to control levels within 1 wk; muscle leptin response (AMPK and ACC phosphorylation, FA oxidation) was also restored, but not until the 2-wk time point. In conclusion, endurance exercise training is able to restore leptin response, but this does not appear to be a necessary precursor for the restoration of insulin response.  相似文献   

4.
In the present investigation, we studied the effects of thiazolidinedione (TZD) treatment on insulin-stimulated fatty acid (FA) and glucose kinetics in perfused muscle from high-fat (HF)-fed rats. We tested the hypothesis that TZDs prevent FA-induced insulin resistance by attenuating proinflammatory signaling independently of myocellular lipid levels. Male Wistar rats were assigned to one of three 3-wk dietary groups: control chow fed (CON), 65% HF diet (HFD), or TZD- (troglitazone or rosiglitazone) enriched HF diet (TZD + HFD). TZD treatment led to a significant increase in plasma membrane content of CD36 protein in muscle (red: P = 0.01, and white: P = 0.001) that correlated with increased FA uptake (45%, P = 0.002) and triacylglycerol (TG) synthesis (46%, P = 0.03) during the perfusion. Importantly, whereas HF feeding caused increased basal TG (P = 0.047), diacylglycerol (P = 0.002), and ceramide (P = 0.01) levels, TZD treatment only prevented the increase in muscle ceramide. In contrast, all of the muscle inflammatory markers altered by HF feeding ( upward arrowNIK protein content, P = 0.009; upward arrowIKKbeta activity, P = 0.006; downward arrowIkappaB-alpha protein, P = 0.03; and upward arrowJNK phosphorylation, P = 0.003) were completely normalized by TZD treatment. Consistent with this, HFD-induced decrements in insulin action were also prevented by TZD treatment. Thus our findings support the notion that TZD treatment causes increased FA uptake and TG accumulation in skeletal muscle under insulin-stimulated conditions. Despite this, TZDs suppress the inflammatory response to dietary lipid overload, and it is this mechanism that correlates strongly with insulin sensitivity.  相似文献   

5.
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin dependent diabetes mellitus (NIDDM) using skeletal muscles isolated from non-obese, insulin resistant type II diabetic Goto-Kakizaki (GK) rats, a well known genetic rat model for type II diabetic humans. Relative to non-diabetic control rats (WKY), insulin-stimulated insulin receptor (IR) autophosphorylation and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation were significantly inhibited in GK skeletal muscles. This may be due to increased dephosphorylation by a protein tyrosine phosphatase (PTPase). Therefore, we measured skeletal muscle total PTPase and PTPase 1B activities in the skeletal muscles isolated from control rats (WKY) and diabetic Goto-Kakizaki (GK) rats. PTPase activity was measured using a synthetic phosphopeptide, TRDIY(P)ETDY(P)Y(P)RK, as the substrate. Basal PTPase activity was 2-fold higher (P < 0.001) in skeletal muscle of GK rats when compared to WKY. Insulin infusion inhibited skeletal muscle PTPase activity in both control (26.20% of basal, P < 0.001) and GK (25.35% of basal, P < 0.001) rats. However, PTPase activity in skeletal muscle of insulin-stimulated GK rats was 200% higher than hormone-treated WKY controls (P < 0.001). Immunoprecipitation of PTPase 1B from skeletal muscle lysates and analysis of the enzyme activity in immunoprecipitates indicated that both basal and insulin-stimulated PTPase 1B activities were significantly higher (twofold, P < 0.001) in skeletal muscle of diabetic GK rats when compared to WKY controls. The increase in PTPase 1B activity in diabetic GK rats was associated with an increased expression of the PTPase 1B protein. We concluded that insulin resistance of GK rats is accompanied atleast by an abnormal regulation of PTPase 1B. Elevated PTPase 1B activity through enhanced tyrosine dephosphorylation of the insulin receptor and its substrates, may lead to impaired glucose tolerance and insulin resistance in GK rats.  相似文献   

6.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

7.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

8.
High-fat (HF) diets induce insulin resistance and alter lipid metabolism, although controversy exists regarding the impact of saturated vs. polyunsaturated fats. Adiponectin (Ad) stimulates fatty acid (FA) oxidation and improves insulin sensitivity in humans and rodents, due in part to the activation of AMP-activated protein kinase (AMPK) and subsequent deactivation of acetyl coenzyme A carboxylase (ACC). In genetically obese, diabetic mice, this acute stimulatory effect on AMPK in muscle is lost. The ability of a HF diet to induce skeletal muscle Ad resistance has not been examined. The purpose of this study was to determine whether Ad's effects on FA oxidation and AMPK/ACC would be reduced following different HF diets, and if this coincided with the development of impaired maximal insulin-stimulated glucose transport. Rats were fed a control (10% kcal fat, CON), high unsaturated fat (60% kcal safflower oil, SAFF), or high saturated fat diet (60% kcal lard, LARD) for 4 wk. Following the dietary intervention, glucose transport, lipid metabolism, and AMPK/ACC phosphorylation were measured in the presence and absence of globular Ad (gAd, 2.5 microg/ml) in isolated soleus muscle. LARD rats showed reduced rates of maximal insulin-stimulated glucose transport compared with CON and SAFF (+68 vs. +172 and +184%, P < or = 0.001). gAd increased pACC (+25%, P < or = 0.01) and FA oxidation (+28%, P < or = 0.05) in CON rats, but not in either HF group. Thus 4 wk of HF feeding results in the loss of gAd stimulatory effect on ACC phosphorylation and muscle FA oxidation, and this can occur independently of impaired maximal insulin-stimulated glucose transport.  相似文献   

9.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

10.
Early postnatal administration of monosodium glutamate (MSG) to rats induces obesity, hyperinsulinemia and hyperglycemia in adulthood, thus suggesting the presence of insulin resistance. We therefore investigated the effects of insulin on glucose transport and lipogenesis in adipocytes as well as insulin binding to specific receptors in the liver, skeletal muscle and fat tissues. An increase of plasma insulin, glucose and leptin levels was found in 3-month-old rats treated with MSG during the postnatal period. The attenuation of insulin stimulatory effect on glucose transport was observed in MSG-treated rats. Despite the lower basal and insulin-stimulated glucose uptake, the incorporation of glucose into lipids was significantly higher in MSG-treated rats, suggesting a shift in glucose metabolism towards lipid synthesis in fat tissue. Insulin binding to plasma membranes from the liver, skeletal muscle and adipocytes was decreased in MSG-treated rats. This is in agreement with the lower insulin effect on glucose transport in these animals. Furthermore, a decreased amount of GLUT4 protein was found in adipocytes from MSG-treated obese rats. The results demonstrated an attenuation of insulin effect on glucose transport due to a lower insulin binding and lower content of GLUT4 protein in MSG-treated rats. However, the effect of insulin on lipogenesis was not changed. Our results indicated that early postnatal administration of MSG exerts an important effect on glucose metabolism and insulin action in adipocytes of adult animals.  相似文献   

11.
12.
Triglyceride accumulation in skeletal muscle contributes to insulin resistance in obesity. We recently showed that alpha-lipoic acid (ALA) reduces body weight and prevents the development of diabetes in diabetes-prone obese rats by reducing triglyceride accumulation in non-adipose tissues. AMP-activated protein kinase (AMPK) is a major regulator of cellular energy metabolism. We examined whether ALA lowers triglyceride accumulation in skeletal muscle by activating AMPK. Alpha2-AMPK activity was decreased in obese rats compared to control rats. Administration of ALA to obese rats increased insulin-stimulated glucose disposal in whole body and in skeletal muscle. ALA also increased fatty acid oxidation and activated AMPK in skeletal muscle. Adenovirus-mediated administration of dominant negative AMPK into skeletal muscle prevented the ALA-induced increases in fatty acid oxidation and insulin-stimulated glucose uptake. These results suggest that ALA-induced improvement of insulin sensitivity is mediated by activation of AMPK and reduced triglyceride accumulation in skeletal muscle.  相似文献   

13.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 microU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.  相似文献   

14.
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.  相似文献   

15.
Time-dependent effects of fatty acids on skeletal muscle metabolism   总被引:4,自引:0,他引:4  
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.  相似文献   

16.
It has been suggested that nitric oxide (NO) is a key regulator of carbohydrate metabolism in skeletal muscle. The present study was undertaken to examine the effects of chronic in vivo competitive antagonism of NO synthase (NOS) by the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (1 mg/ml) for 14 days on glucose tolerance and skeletal muscle glucose transport in rats. Oral glucose tolerance tests (OGTT) revealed an impaired glucose tolerance in the L-NAME-treated rats as reflected by the area under the glucose curve (4675 +/- 514 mg% x 120 min (control) vs 6653 +/- 571 mg% x 120 min (L-NAME treated); P < 0.03). While a large rise in plasma insulin concentration was present in the control rats (0.87 +/- 0.34 ng/ml, P < 0.001) during the first 15 min of the OGTT, rises in plasma insulin concentration were absent in the L-NAME-treated rats (0.18 +/- 0.13 ng/ml, P = NS). Intravenous glucose tolerance tests confirmed an impaired insulin secretion in the L-NAME-treated rats. In contrast, insulin-stimulated 2-deoxyglucose transport was enhanced (P < 0.03) by chronic NOS inhibition (5.29 +/- 0.83 nmol/g/min) compared to control rats (2.21 +/- 0.90 nmol/g/min). Plasma sodium concentrations were lower and plasma potassium concentrations were higher in the L-NAME-treated group, indicating an impaired electrolyte status. We conclude that chronic in vivo administration of a NOS inhibitor, while not impairing basal parameters of carbohydrate metabolism, may manifest different responses than acute exposure to the same agent in vitro.  相似文献   

17.
Insulin action in skeletal muscle from patients with NIDDM   总被引:12,自引:0,他引:12  
Insulin resistance in peripheral tissues is a common feature of non insulin-dependent diabetes mellitus (NIDDM). The decrease in insulin-mediated peripheral glucose uptake in NIDDM patients can be localized to defects in insulin action on glucose transport in skeletal muscle. Following short term in vitro exposure to both submaximal and maximal concentrations of insulin, 3-O-methylglucose transport rates are 40-50% lower in isolated skeletal muscle strips from NIDDM patients when compared to muscle strips from nondiabetic subjects. In addition, we have shown that physiological levels of insulin induce a 1.6-2.0 fold increase in GLUT4 content in skeletal muscle plasma membranes from control subjects, whereas no significant increase was noted in NIDDM skeletal muscle. Impaired insulin-stimulated GLUT4 translocation and glucose transport in NIDDM skeletal muscle is associated with reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI3-kinase activity. The reduced IRS-1 phosphorylation cannot be attributed to decreased protein expression, since the IRS-1 protein content is similar between NIDDM subjects and controls. Altered glycemia may contribute to decreased insulin-mediated glucose transport in skeletal muscle from NIDDM patients. We have shown that insulin-stimulated glucose transport is normalized in vitro in the presence of euglycemia, but not in the presence of hyperglycemia. Thus, the circulating level of glucose may independently regulate insulin stimulated glucose transport in skeletal muscle from NIDDM patients via a down regulation of the insulin signaling cascade.  相似文献   

18.
Leptin has been proposed to be a sensor of energy storage in adipose tissues, and is capable of mediating a feedback signal to the hypothalamus, which is involved in the regulation of energy homeostasis and body weight. In order to investigate the issue of whether resistance to the activity of leptin on insulin sensitivity is observed in young Otsuka Long-Evans Tokushima Fatty (OLETF) rats at 8 weeks of age, leptin (50 nmol/kg/h) was administered intravenously for 16 h to OLETF and Long-Evans Tokushima Otsuka (LETO) (lean controls) rats, followed by a measurement of insulin-stimulated glucose uptake in hindlimb muscles during hyperinsulinemic euglycemic clamp technique. In the case of LETO rats, the administration of leptin significantly decreased plasma insulin levels prior to the clamp test, but did not change plasma glucose levels. Furthermore, leptin led to an increase in insulin-stimulated glucose uptake in hindlimb muscles. However, in the case of OLETF rats, leptin administration changed neither plasma insulin levels nor insulin-stimulated glucose uptake. These data demonstrate that OLETF rats at 8 weeks of age have already become resistant to high concentration of peripheral leptin.  相似文献   

19.
Although obesity is associated with overactivation of the white adipose tissue (WAT) renin-angiotensin system (RAS), a causal link between the latter and systemic insulin resistance is not established. We tested the hypothesis that overexpression of angiotensinogen (Agt) from WAT causes systemic insulin resistance via modulation of adipose inflammation. Glucose tolerance, systemic insulin sensitivity, and WAT inflammatory markers were analyzed in mice overexpressing Agt in the WAT (aP2-Agt mice). Proteomic studies and in vitro studies using 3T3-L1 adipocytes were performed to build a mechanistic framework. Male aP2-Agt mice exhibited glucose intolerance, insulin resistance, and lower insulin-stimulated glucose uptake by the skeletal muscle. The difference in glucose tolerance between genotypes was normalized by high-fat (HF) feeding, and was significantly improved by treatment with angiotensin-converting enzyme (ACE) inhibitor captopril. aP2-Agt mice also had higher monocyte chemotactic protein-1 (MCP-1) and lower interleukin-10 (IL-10) in the WAT, indicating adipose inflammation. Proteomic studies in WAT showed that they also had higher monoglyceride lipase (MGL) and glycerol-3-phosphate dehydrogenase levels. Treatment with angiotensin II (Ang II) increased MCP-1 and resistin secretion from adipocytes, which was prevented by cotreating with inhibitors of the nuclear factor-κB (NF-κB) pathway or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, we show for the first time that adipose RAS overactivation causes glucose intolerance and systemic insulin resistance. The mechanisms appear to be via reduced skeletal muscle glucose uptake, at least in part due to Ang II-induced, NADPH oxidase and NFκB-dependent increases in WAT inflammation.  相似文献   

20.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号