首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petter Portin 《Genetics》1975,81(1):121-133
The mutations of the Abruptex locus in Drosophila melanogaster fall into three categories. There are recessive lethal alleles and viable alleles. The latter can be divided into suppressors and nonsuppressors of Notch mutations. The recessive lethals are lethal in heterozygous combination with Notch. As a rule the recessive lethals are lethal also in heterozygous combination with the viable alleles. Heterozygous combinations of certain viable alleles are also lethal. In such heterozygotes, one heteroallele is a suppressor of Notch and the other is a nonsuppressor. Other heterozygous combinations of viable alleles are viable and have an Abruptex phenotype. The insertion of the wild allele of the Abruptex locus as an extra dose (carried by a duplication) into the chromosomal complement of the fly fully restores the viability of the otherwise lethal heterozygotes if two viable alleles are involved. The extra wild allele also restores the viability of heterozygotes in which a lethal and a suppressor allele are present. If, however, a lethal and a nonsuppressor are involved, the wild allele only partly restores the viability, and the effect of the wild allele is weakest if two lethal alleles are involved. It seems likely that of the viable alleles the suppressors of Notch are hypermorphic and the nonsuppressors are hypomorphic. The lethal alleles share properties of both types, and are possibly antimorphic mutations. It is suggested that the locus is responsible for a single function which, however, consists of two components. The hypermorphic mutations are defects of the one component and the hypomorphic mutations of the other. In heterozygotes their cumulative action leads to decreased viability. The lethal alleles are supposed to be defects of the function as a whole. The function controlled by the locus might be a regulative function.  相似文献   

2.
Recessive lethal mutations in the T/t-complex of the mouse characteristically show defective genetic complementation, even when they affect very different stages of embryogenesis and are known to be nonallelic. To address the question of their genetic or functional relationship, we have applied the cis-trans test, using several well defined recombinant t-chromosomes that carry two or more lethal mutations, and others that are devoid of specific lethals. We show here that the defective complementation that occurs between different t-lethals is a specific result of the trans configuration; thus these genes, which may map as much as 15 cM apart, constitute a functional unit. Some speculations are presented to interpret this enigma in terms of DNA plasticity.  相似文献   

3.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

4.
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are temperature-sensitive embryonic lethals. Twelve mutants, in ten genes, are early larval lethals. Two mutants are late larval lethals, and the expression of one of these is influenced by the number of X chromosomes in the genotype. Two mutants are maternal-effect lethals; for both, oocytes made by mutant hermaphrodites are rescuable by wild-type sperm. One of the maternal-effect lethals and two larval lethals are allelic. One mutant makes defective sperm. The lethals and steriles have been mapped by recombination and by complementation testing against 19 deficiencies identified after X-ray treatment. The deficiencies divide the region, about 15% of the X-chromosome linkage map, into at least nine segments. The deficiencies have also been used to check the phenotypes of hemizygous lethal and sterile hermaphrodites.  相似文献   

5.
Alice Kenvon 《Genetica》1972,43(4):536-551
Eight fourth chromosomes which were homozygous lethal and 170 which were homozygous nonlethal were extracted from the same Drosophila melanogaster cage. The lethals were complementary, i.e., they were viable in all 28 nonreflexive pairwise combinations. Three different lethals produced sterile homozygotes; these are called leaky lethals. Different lethal heterozygotes' viabilities were compared by means of paired-t tests. The difference in mean relative viabilities between a pair of genotypes containing different lethals but exactly the same nonlethal was treated as one observation. The mean difference for any pair of lethals was based on only part of the full array of nonlethals. Of 17 possible paired comparisons, nine were statistically significant. In eight out of ten possible pairs and in six out of seven significant pairs, the heterozygous viability of leaky lethals was less than that of absolute (nonleaky) lethals. There was no association between stage of homozygous lethal action and heterozygous viability effect. In general, different lethals had different heterozygous effects on viability. The results are summarized in Table 5. In memoriam David Walter Kenyon (1939–1972)Research supported by The National Science Foundation of the United States (GB-3759).  相似文献   

6.
Different mutations belonging to the HLI and HLII complementation groups of the haplolethal (HL) region of the Shaker complex (ShC) are described. The HLI complementation group includes viable (hdp), recessive lethals [l(1)1614], semidominant lethals [l(1)8384] and dominant lethals [l(1)5051,l(1)9916, l(1)13193], lack-of-function alleles that affect nervous system, cuticle and muscle development. The HLI complementation group encodes troponin I. HLII lack-of-function mutations [l(1)174 and l(l)4058] affect nervous system development. The semidominant lethal HLI mutation 1(1)8384 shows differential complementation with other mutations in the ME and HL regions of ShC. Thus, heterozygous combinations of l(1)8384 with ME mutations l(1)162 and l(1)387 are poorly viable. The same phenomenon is observed for heterozygotes of l(1)8384 with HL mutations l(1)1199, l(1)2288 and l(1)3014. These specific interactions indicate the existence of functional relationships among the genetic elements of ShC. The implications for the understanding of the functional organization of ShC are discussed.  相似文献   

7.
Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster, eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua 1 and pur 1, which yield auxotrophic mutations.--The eight new mutations have been characterized phenotypically in double heterozygotes with gua 1, pur 1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2. The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.--Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions.  相似文献   

8.
In the ‘doubling-dose’ method currently used in genetic risk evaluation, two principle assumptions are made and these are: (1) there is proportionality between spontaneous and induced mutations and (2) the lesions that lead to spontaneous and induced mutations are essentially similar. The studies reported in this paper were directed at examining the validity of these two assumptions in Drosophila. An analysis was made of the distribution of sex-linked recessive lethals induced by MR, one of the well-studied mutator systems in Drosophila.Appropriate genetic complementation tests with 15 defined X-chromosome duplications showed that MR-induced lethals occurred at many sites along the X-chromosome (in contrast to the known locus specificity of MR-induced visible-mutations); some, but not all these sites at which recessive lethals arose in the MR-system are the same as those known to be hot-spots for X-ray-induced lethals. With in situ hybridization we were able to demonstrate that a majority of MR-induced lethals is associated with a particular mobile DNA sequence, the P-element, i.e. they arose as a result of transposition.The differences between the profiles of MR-induced and X-ray-induced recessive lethals, and the nature of MR-induced and X-ray-induced mutations, thus raise questions about the validity of the assumptions involved in the use of the ‘doubling-dose’ method.  相似文献   

9.
Summary The possibility that viable male-sterile mutations occur in vital genes and the role played by lethal mutations and viable male-steriles in male gametogenesis were studied. Five sterile loci were identified among the 30 most proximal vital loci of the X-chromosome and two of them were shown to be allelic with lethal mutations. Fertility tests on gynanders for nonautonomous lethal mutations proved that vital genes operate autonomously in male gonads, independently of their effect on somatic tissues. Fertility tests of ts lethals, shifted to the nonpermissive temperature after the TSP, showed that 40% of vital genes function in male gonads. It is further shown that about the same proportion of vital genes is operating in female gonads and that the two groups overlap by about 70%. The role of viable and lethal male sterile mutations in the control and regulation of male gametogenesis is discussed in detail.This work was supported by the Israel Commission for Basic Sciences.  相似文献   

10.
In the ‘doubling-dose’ method currently used in genetic risk evaluation, two principle assumptions are made and these are: (1) there is proportionality between spontaneous and induced mutations and (2) the lesions that lead to spontaneous and induced mutations are essentially similar. The studies reported in this paper were directed at examining the validity of these two assumptions in Drosophila. An analysis was made of the distribution of sex-linked recessive lethals induced by MR, one of the well-studied mutator systems in Drosophila.

Appropriate genetic complementation tests with 15 defined X-chromosome duplications showed that MR-induced lethals occurred at many sites along the X-chromosome (in contrast to the known locus specificity of MR-induced visible-mutations); some, but not all these sites at which recessive lethals arose in the MR-system are the same as those known to be hot-spots for X-ray-induced lethals. With in situ hybridization we were able to demonstrate that a majority of MR-induced lethals is associated with a particular mobile DNA sequence, the P-element, i.e. they arose as a result of transposition.

The differences between the profiles of MR-induced and X-ray-induced recessive lethals, and the nature of MR-induced and X-ray-induced mutations, thus raise questions about the validity of the assumptions involved in the use of the ‘doubling-dose’ method.  相似文献   


11.
We have analyzed the viability of different types of X chromosomes in homozygous clones of female germ cells. The chromosomes carried viable mutations, single-cistron zygotic-lethal and semi-lethal mutations, or small (about six chromosome band) deletions. Homozygous germ-line clones were produced by recombination in females heterozygous for an X-linked, dominant, agametic female sterile.

All the zygotic-viable mutants are also viable in germ cells. Of 16 deletions tested (uncovering a total of 93 bands) only 2 (of 4 and 5 bands) are germ-cell viable. Mutations in 15 lethal complementation groups in the zeste-white region were tested. When known, the most extreme alleles at each locus were tested. Only in five loci (33%) were the mutants viable in the germ line. Similar studies of the same deletions and point-mutant lethals in epidermal cells show that 42% of the bands and 77% of the lethal alleles are viable. Thus, germ-line cells have more stringent cell-autonomous genetic requirements than do epidermal cells.

The eggs recovered from clones of three of the germ-cell viable zw mutations gave embryos arrested early in embryogenesis, although genotypically identical embryos derived from heterozygous oogonia die as larvae or even hatch as adult escapers. For two genes, homozygosis of the mutations tested also caused embryonic arrest of heterozygous female embryos, and in one case, the eggs did not develop at all. Germ-line clones of one quite leaky mutation gave eggs that were indistinguishable from normal. The abundance of genes whose products are required for oogenesis, whose products are required in the oocyte, and whose activity is required during zygotic development is discussed.

  相似文献   

12.
Different mutations belonging to the HLI and HLII complementation groups of the haplolethal (HL) region of the Shaker complex (ShC) are described. The HLI complementation group includes viable (hdp), recessive lethals [l(1)1614], semidominant lethals [l(1)8384] and dominant lethals [l(1)5051,l(1)9916, l(1)13193], lack-of-function alleles that affect nervous system, cuticle and muscle development. The HLI complementation group encodes troponin I. HLII lack-of-function mutations [l(1)174 and l(l)4058] affect nervous system development. The semidominant lethal HLI mutation 1(1)8384 shows differential complementation with other mutations in the ME and HL regions of ShC. Thus, heterozygous combinations of l(1)8384 with ME mutations l(1)162 and l(1)387 are poorly viable. The same phenomenon is observed for heterozygotes of l(1)8384 with HL mutations l(1)1199, l(1)2288 and l(1)3014. These specific interactions indicate the existence of functional relationships among the genetic elements of ShC. The implications for the understanding of the functional organization of ShC are discussed.  相似文献   

13.
Mary L. Alexander 《Genetics》1975,81(3):493-500
The mutation rate was determined for mature sperm at eight specific gene loci on the third chromosome of Drosophila melanogaster using the low ion density radiations of 22 Mev betatron X-rays. A dose of 3000 rads of betatron X-rays produced a mutation rate of 4.36 x 10-8 per rad/locus. Among the mutations observed, 66% were recessive lethals and 34% viable when homozygous. Only one of the 24 viable mutations was associated with a chromosome aberration. Among the 47 recessive lethals, no two-break aberrations were detected in 48.9% of the lethals, deletions were associated with 42.2%, inversions with 6.7% and translocations with 2.2%.—When these genetic results are compared to those for 250 KV X-rays, the mutation rate for betatron treatments was slightly lower (.76), the recessive lethal rate among induced mutations was higher, and the chromosome aberrations among lethal mutations were slightly lower than with 250 KV X-rays. Although the two types of irradiations differ by an ion density of approximately ten, the amount and types of inheritable genetic damage induced by the two radiations in mature sperm were not significantly different.  相似文献   

14.
In Drosophila melanogater six chemicals were tested for radioprotectiveeffect against X-ray-induced genetic damage such as sex-linked recessive lethals and autosomal translocations using Oster's ring-X chromosome stock. A 2-day brood pattern was followed to score the damage induced at different spermatogenic stages separately. In all cases the chemicals were injected before X-irradiation. 10-mM solution of reduced glutathione (GSH) provided statistically significant protection against sex-linked recessive lethals in all broods. In translocation tests this chemical reduced the frequency in all broods but the result is not statistically significant. Cysteamine (MEA) did not show any protective effect but the frequency of lethals was slightly reduced in the first and fourth broods. 2-Aminoethyl isothiuronium Br·HBr (AET) showed a statistically significant protective effect when the data of the replicate experiments were pooled. Negative results were obtained for 5-hydroxytryptamine (5-HT) in sex-linked lethal tests. Aminoethyl phosphorothioate (AEPT) reduced the frequencies of both sex-linked lethals and autosomal translocations in all broods consistently but the results are not statistically significant. In tests for both lethals and translocations the reduction was largest in the stages with highest radiosensitivity. N(3-Aminopropyl)aminoethyl phosphorothioate (3AP-AEPT) gave no protection.  相似文献   

15.
Genetic Change in Mutations at the T/t-Locus in the Mouse   总被引:1,自引:0,他引:1       下载免费PDF全文
Bennett D  Dunn LC  Artzt K 《Genetics》1976,83(2):361-372
Recessive lethal or semilethal alleles at the T/t locus in the mouse generate new t-variants, with characteristics different from the parent allele at a rate of about 10-3. Almost invariably the variant chromosome carries marker genes derived from the opposite parental chromosome. New t-mutations obtained in this way are sometimes recessive lethals that are indistinguishable from those in already known complementation groups. Most derived t-mutations are viable, however. This paper summarizes data on the rate and types of variants produced by members of each of the six lethal complementation groups, and by semilethal alleles. It appears that particular complementation groups preferentially generate certain types of variants, and that in general, the pattern of variant production runs "uphill," that is, to less abnormal states. The data are compatible with the hypothesis that t-mutations represent some extent of altered chromosome and that variants are produced by loss of abnormal material.  相似文献   

16.
Dominant lethal mutations induced by γ-radiation were measured in stage-7 and stage-14 oocytes of Musca domestica. At both stages the data are consistent with the multi-hit theory on radiation induction of dominant lethals. This conclusion is supported by fractionation experiments which indicate that both] S7 and S14 oocytes are capable of repairing, in defferent periods of time, a similar amount of dominant lethal damage.  相似文献   

17.
Thirty-four independent nonviable c-locus mutations (types cal, albino lethal and cas, albino subvital), derived from radiation experiments, were tested for involvement of nearby markers tp, Mod-2, sh-1, and Hbb: 10, 22, and 2 involved, respectively, none of these markers, Mod-2 alone, and Mod-2 plus sh-1. When classified on this basis, as well as according to developmental stage at which homozygotes die, and by limited complementation results, the 34 independent mutations fell into 12 groups. From results of a full-scale complementation grid of all 435 possible crosses among 30 of the mutations, we were able to postulate an alignment of eight functional units by which the 12 groups fit a linear pattern. Abnormal phenotypes utilized in the complementation study were deaths at various stages of prenatal or postnatal development, body weight, and reduction or absence of various enzymes. Some of these phenotypes can be separated by complementation (e.g., there is no evidence that mitochondrial malic enzyme influences survival at any age); others cannot thus be separated (e.g., glucose-6-phosphatase deficiency and neonatal death).—We conclude that all of the nonviable albino mutations are deficiencies overlapping at c, and ranging in size from <2cM to 6-11 cM. The characterization of this array of deficiencies should provide useful tools for gene-dosage studies, recombinant-DNA fine-structure analyses, etc. Since many of the combinations of lethals produce viable albino animals that resemble the standard c/c type, we conclude (a) that the c locus contains no sites essential for survival, and (b) that viable nonalbino c-locus mutations (cxv) are the result of mutations within the c cistron. Viable albinos (cav, the majority of radiation-induced c-locus mutations) may be intracistronic mutations or very small deficiencies.  相似文献   

18.
The segment pattern of larval cuticular structures was examined for individuals bearing lethal genotypes associated with the Antennapedia gene complex (ANT-C). The results provide new evidence for the role of this complex in body segmentation in Drosophila and demonstrate that the ANT-C, like the bithorax complex, effects both larval and imaginal tissues. Lethal genotypes involving new EMS induced lesions or dominant homoeotic mutations (Antp or AntpScx) of the Antennapedia complementation group show anomalies in the larval meso- and metathorax. The phenotype is interpreted as a homoeotic transformation of the meso- and metathorax to prothorax. We suggest that Antp+ functions in the elicitation of mesothoracic development above that of a prothoracic level in the ventral meso- and metathorax. The lethality of the Sex combs reduced complementation group, which includes the mutation Multiple sex combs (Msc), is characterized by incomplete head formation and the lack of definitive prothoracic ventral setal belts. These results indicate that Scr+ is necessary for normal development of the prothorax and are consistent with earlier interpretations based on adult phenotypes. Five other lethal complementation sites, assigned to polytene chromosome interval 84A-B1,2 have been analyzed. They are not associated with dominant homoeotic phenotypes in the adult. The terminal phenotype of individuals carrying lethal mutations in the W36, R11, or R14 complementation groups demonstrate that these loci are important in normal anterior development and/or body segmentation and suggest functional relationships to the homoeotic mutations previously localized to the 84A-84B1,2 polytene interval.  相似文献   

19.
20.
We report the isolation and complementation mapping of lethal mutations within the 59AB region on the second chromosome of Drosophila melanogaster. The newly induced lethal mutations in this region define four different complementation groups. Using existing and newly induced deficiencies, these loci can be assigned to three different chromosomal intervals. Moreover, complementation analysis with chromosomes carrying various P element insertions, in combination with a molecular characterization of the corresponding insertion sites, suggests that the previously described male sterile mutation bellwether is an allele of an essential gene that encodes the alpha subunit of the mitochondrial ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号