首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous paper kinetic equations of secondary active transport by co-transport have been derived. In the present paper these equations have been expanded by including the effect of an electrical potential difference in order to make them applicable to the more realistic systems of secondary active transport driven by the gradients of Na+ or H+. Thermodynamically an electrical potential difference is as a driving force fully exchangeable with an equivalent chemical potential difference. This is not necessarily so for the kinetics of co-transport. It is not always the same whether a given difference in electrochemical activity of the driver ion is mainly osmotic, i.e. due to difference in concentration, or electric, i.e. due to a difference in the electrochemical activity coefficient. In most cases a difference in concentration is more effective in driving co-transport than is an equivalent difference in electrical potential leading to the same difference in electrical activity. The effectiveness of the latter highly depends on the model, whether it is of the affinity type or of the velocity type, but also on whether the loaded or the unloaded carrier bears an electrical charge. With the same electrical potential difference co-transport is as a rule faster if the ternary complex rather than the empty carrier is charged. Also the “standard parameters”, (see Glossary, page 62) Jmax and Km, of the overall transport respond differently to the introduction of an electrical potential difference, depending on the model. So an electrical potential difference will mostly affect Km if the loaded carrier is ionic, and mostly Jmax if the empty carrier is ionic, provided that the mobility of the loaded carrier is greater than that of the empty one. On the other hand, distinctive criteria between affinity type and velocity type models are partly affected by an electrical potential difference. If the translocation steps of loaded and unloaded carrier are no longer rate limiting for the overall transport, electrical effects on the transport rate are bound to vanish as does the activation by co-transport.  相似文献   

2.
3.
4.
5.
The kinetic plot (initial rate of Ca2+ transport versus concentration) of mitochondrial Ca2+ transport is hyperbolic in a sucrose medium. The plot becomes sigmoidal in the presence of competitive inhibitors of Ca2+ binding to low affinity sites of the membrane surface such as Mg2+ and K+. The plot also becomes sigmoidal in the presence of Ba2+. Ba2+ is a competitive inhibitor of both Ca2+ transport and Ca2+ binding to the low affinity sites. The Ki for the inhibition of Ca2+ transport by Ba2+ increases in the presence of K+ and Mg2+, which suggests a competition for the low affinity sites between the cations. The plot is still hyperbolic in the presence of La3+, which inhibits Ca2+ transport competitively. Ruthenium red which is a pure non-competitive inhibitor of mitochondrial Ca2+ transport, does not affect the shape of the kinetic plot. These results indicate that the surface potential, which depends on the ions bound to the low affinity sites, determines whether the kinetics of Ca2+ uptake in mitochondria is sigmoidal or hyperbolic.  相似文献   

6.
7.
Uptake of L-lactate into rabbit jejunal brush-border-membrane vesicles prepared by a Ca2+-precipitation procedure was studied by a rapid filtration technique with L-[14C]-lactate as tracer. Transport of L-lactate into an intravesicular (osmotically reactive) space could be established. An inwardly directed NaCl gradient (outside 21 mM/inside 0mM) stimulated the uptake of L-lactate at 15 s 2-4-fold compared with that observed with an equal KCl gradient. A transient accumulation of L-lactate inside the vesicles (overshoot) was observed in the presence of an NaCl gradient. Gradients of LiCl, RbCl, CsCl or choline chloride were not able to replace NaCl in the stimulation of L-lactate uptake. L-Lactate uptake was saturable only in the presence of Na+. D-Lactate, DL-thiolactate (2-DL-mercaptopropionate), pyruvate and propionate inhibited the Na+-stimulated L-lactate uptake; D-lactate, thiolactate and pyruvate provoked trans-stimulation of L-lactate uptake. Artificially imposed diffusion potentials (inside negative) did not exert any effect on the Na+-dependent L-lactate uptake. The results are consistent with the existence of an electroneutral Na+/L-lactate co-transport system in the brush border of rabbit small intestine.  相似文献   

8.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 microM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

9.
The conversion of red cells of patients with sickle cell anemia (S-S) from biconcave disk to sickle shape by removal of oxygen was found to increase the fraction of medium trapped in cells packed by centrifugation from 0.036 (S.E. 0.003) to 0.106 (S.E. 0.004). The fraction of water in the cells (corrected for trapped medium) was not affected by this shape transformation. Cation transport, however, was changed profoundly. S-S cells incubated in N2 rather than O2 showed net K loss with acceleration of both influx and outflux. That this change in K transport was due to the process of sickling was indicated by (1) the persistence of the effect in the absence of plasma, (2) the absence of the effect in hypoxic S-S cells in which sickling was inhibited by alkali or carbon monoxide, (3) the reversal of the effect when sickling was reversed by exposure to O2, and (4) the independence of the effect from such potentially important factors as age of the cell population. The acceleration of K transport by sickling is probably mediated by modification of the cell surface rather than the cell interior since concentrated sickle hemoglobin solutions in O2 or N2 did not show selective affinity for K. In molecular terms, the effect of sickling on K transport can be explained by presuming that the shape change (1) opens pathways for the free diffusion of K, and (2) accelerates K transport by a non-diffusion carrier process. The evidence for the former mechanism included (a) dependence of K influx into sickled cells on the concentration of K in the medium, and (b) increase in the total cation content of sickled cells with increasing pH. Observations suggestive of a carrier process included (a) the failure of sickled cell K concentration to become equal to external K concentration even after 48 hours, (b) the deviation of the flux ratio from that characteristic of diffusion, and (c) the dependence of K influx on glycolysis.  相似文献   

10.
Summary Equations are developed to examine the effects of secondary active transport processes on the steady-state membrane potential of symmetrical cells. It is shown that, with suitable modifications, equations of the type developed by Goldman, Hodgkin and Katz may be derived to accommodate the contributions to the membrane potential of both electroneutral and electrogenic transporters. Where the membrane potential is function of the dominant medium ions (Na, K, and Cl), other contributions can come only from an electrogenic Na pump and from neutral co- and counter-transporters if, and only if, these involve the dominant ions. Experimental approaches to measure the parameters necessary to solve the equations developed here are discussed.  相似文献   

11.
1. The effect of theophylline on ion transport was examined using an in vitro short-circuited preparation of lizard colon. 2. Theophylline increased short circuit current (Isc) and transmural potential difference (PD). This increase caused by theophylline was accompanied by a small increase in transmural conductance (Gt). 3. Theophylline did not inhibit the absorption of Na+ but reversed Cl- absorption to secretion. This latter effect was due to an increase of the serosal-to-mucosal flux of Cl-. 4. Ion substitution experiments revealed that the effect of theophylline was Na+- and HCO3(-)-dependent and that these ions were required in the bathing solution. 5. These results with lizard colon are compared with those reported for mammalian colon and the mechanism of theophylline-induced Cl- secretion in these epithelia is discussed.  相似文献   

12.
Taurine, in concentrations greater than 10 mM, was found to have an inhibitory effect on passive calcium uptake and release in rat brain synaptosomal preparations. Amino acids similar to that of taurine in chemical structure, β-alanine, hypotaurine, homotaurine and γ-amino-butyric acid were also shown to inhibit calcium uptake in this preparation. Taurine, though, did not alter the permeability of these preparations to sodium or potassium. It thus appears that taurine and chemically related amino acids can alter calcium movements in these preparations. It is postulated that this effect is due to binding to specific taurine sites in the synaptosomal membranes.  相似文献   

13.
T Y Tsong 《Biochemistry》1975,14(25):5409-5414
Binding of 8-anilino-1-naphthalenesulfonate to dimyristoyl-L-alpha-lecithin bilayers enhances the fluorescence quantum yield of the dye molecule by 100-fold. By following the generation of fluorescence after a rapid mixing in a stopped-flow apparatus (mixing time 2 msec), kinetics of the binding of the fluorescence probe to the phospholipid vesicles has been investigated in the temperature range where the crystal-liquid crystal phase transition of the bilayer structures occurs. No reactions depending on the dye or the vesicle concentrations were detected. This suggests that the initial adsorption of the dye was very rapid. Two kinetic phases which appear in the 50 msec and the second time ranges are unimolecular. The faster one has a small amplitude and is observable in the entire temperature range studied. In the phase transition region the slower reaction becomes the major kinetic phase. It also increases the apparent concentration of bound dye by a factor of 2. These observations suggest that the 50-msec reaction has detected a reorientation of the probe molecule after the initial binding, and that the slow reaction represents a transport of the dye molecule into the inner layer of the lipid vesicle. The transport reaction is extremely temperature sensitive and exhibits a maximum rate at the midpoint of the bilayer phase transition (Tm = 24.1 degrees). the Arrhenius plot of the transport reaction shows a maximum at the Tm. the same temperature dependence was also observed for the bromothymol blue transport reaction. However, no such effects were detected for less amphiphilic molecules such as tetracycline, chlortetracycline, and pyrene. In the latter systems only a slight bending of the Arrhenius plots were seen at the phase transition temperature. Since the kinetics of the transport of 8-anilino-1-naphthalenesulfonate is sensitive to the physical state of the phospholipid bilayers this reaction may be used for probing membrane structures.  相似文献   

14.
Charge-pulse relaxation experiments of valinomycin-mediated Rb+ transport have been carried out in order to study the influence of membrane structure on carrier kinetics. From the experimental data the rate constants of association (kR) and dissociation (kD) of the ion-carrier complex as well as the rate constants of translocation of the complex (kMS) and of the free carrier (kS) could be obtained. The composition of the planar bilayer membrane was varied in a wide range. In a first series of experiments, membranes made from glycerolmonooleate dissolved in different n-alkanes (n-decane to n-hexadecane), as well as solvent-free membranes made from the same lipid by the Montal-Mueller technique were studied. The translocation rate constants kS and kMS were found to differ by less than a factor of two in the membranes of different solvent content. Much larger changes of the rate constants were observed if the structure of the fatty acid residue was varied. For instance, an increase in the number of double bonds in the C20 fatty acid from one to four resulted in an increase of kS by a factor of seven and in an increase of kMS by a factor of twenty-four. The stability constant K = kR/kD of the ion-carrier complex as well as the translocation rate constants kS and kMS were found to depend strongly on the nature of the polar headgroup of the lipid. The incorporation of cholesterol into glycerolmonooleate membranes reduced kR, kMS and kS up to seven-fold.  相似文献   

15.
1. The effect of acetylcholine (ACh) on the ion transport of frog (Rana esculenta) sartorius muscles was studied. ACh was applied in bathing solution, Na influx and K efflux were measured using 24Na and 42K isotopes. 2. Na influx of sartorius muscles was increased by 1 mmol/1 ACh 2-10 fold depending on the experimental arrangement. The increase was greater if Na influx was measured at the beginning of ACh depolarization. During ACh treatment the Na influx took about the same time course as the depolarization recorded extracellularly. This type of recording approximately reflects the depolarization proceeding on the sartorius muscle fibres. 3. The presence of 31 nmol/l tetrodotoxin (TTX) did not modify the degree of increase of Na influx. 4. Rate coefficients for K efflux were increased 2-5 fold by ACh. The maximum rate coefficients were obtained in the first minute of ACh treatment. 5. Increase in K loss evolves also in the presence of 31 nmol/l TTX. The increase in rate coefficients was found to be about 30% less than without TTX in the first minute of ACh action. 6. The results indicate that in the presence of ACh the observed increase in Na influx and K efflux is brought about mainly by changes in Na and K conductance induced by ACh at the end-plates rather than by the action potentials accompanying ACh depolarization.  相似文献   

16.
Vesicular fragments of sarcoplasmic reticulum were isolated from pectoralis muscle of normal and dystrophic chicken. Purification of both preparations was equally satisfactory, as shown by a prominent ATPase band in electrophoresis gels. Measurements of ATPase phosphorylation, Ca2+ transport and Pi cleavage by rapid quench methods revealed a lower specific activity of the dystrophic vesicles with respect to all of these functions. On the other hand, Ca2+-independent ATPase activity was found to be increased in dystrophic vesicles. It is suggested that a fraction of ATPase units of dystrophic sarcoplasmic reticulum is not activated by Ca2+, owing to an altered protein assembly within the membrane bilayer. In fact, when the membrane structure is perturbed by detergents normal and dystropic preparations acquire an equally high Ca2+-dependent ATPase.  相似文献   

17.
This paper investigates the impact of increased salinity on touch-induced receptor and action potentials of Chara internodal cells. We resolved underlying changes in ion transport by current/voltage analysis. In a saline medium with a low Ca(2+) ion concentration [(Ca(2+))(ext)], the cell background conductance significantly increased and proton pump currents declined to negligible levels, depolarizing the membrane potential difference (PD) to the excitation threshold [action potential (AP)(threshold)]. The onset of spontaneous repetitive action potentials further depolarized the PD, activating K(+) outward rectifying (KOR) channels. K(+) efflux was then sustained and irrevocable, and cells were desensitized to touch. However, when [Ca(2+)](ext) was high, the background conductance increased to a lesser extent and proton pump currents were stimulated, establishing a PD narrowly negative to AP(threshold). Cells did not spontaneously fire, but became hypersensitive to touch. Even slight touch stimulus induced an action potential and further repetitive firing. The duration of each excitation was extended when [Ca(2+)](ext) was low. Cell viability was prolonged in the absence of touch stimulus. Chara cells eventually depolarize and die in the saline media, but touch-stimulated and spontaneous excitation accelerates the process in a Ca(2+)-dependent manner. Our results have broad implications for understanding the interactions between mechano-perception and salinity stress in plants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号