首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper kinetic equations of secondary active transport by co-transport have been derived. In the present paper these equations have been expanded by including the effect of an electrical potential difference in order to make them applicable to the more realistic systems of secondary active transport driven by the gradients of Na+ or H+. Thermodynamically an electrical potential difference is as a driving force fully exchangeable with an equivalent chemical potential difference. This is not necessarily so for the kinetics of co-transport. It is not always the same whether a given difference in electrochemical activity of the driver ion is mainly osmotic, i.e. due to difference in concentration, or electric, i.e. due to a difference in the electrochemical activity coefficient. In most cases a difference in concentration is more effective in driving co-transport than is an equivalent difference in electrical potential leading to the same difference in electrical activity. The effectiveness of the latter highly depends on the model, whether it is of the affinity type or of the velocity type, but also on whether the loaded or the unloaded carrier bears an electrical charge. With the same electrical potential difference co-transport is as a rule faster if the ternary complex rather than the empty carrier is charged. Also the “standard parameters”, (see Glossary, page 62) Jmax and Km, of the overall transport respond differently to the introduction of an electrical potential difference, depending on the model. So an electrical potential difference will mostly affect Km if the loaded carrier is ionic, and mostly Jmax if the empty carrier is ionic, provided that the mobility of the loaded carrier is greater than that of the empty one. On the other hand, distinctive criteria between affinity type and velocity type models are partly affected by an electrical potential difference. If the translocation steps of loaded and unloaded carrier are no longer rate limiting for the overall transport, electrical effects on the transport rate are bound to vanish as does the activation by co-transport.  相似文献   

2.
3.
The kinetic plot (initial rate of Ca2+ transport versus concentration) of mitochondrial Ca2+ transport is hyperbolic in a sucrose medium. The plot becomes sigmoidal in the presence of competitive inhibitors of Ca2+ binding to low affinity sites of the membrane surface such as Mg2+ and K+. The plot also becomes sigmoidal in the presence of Ba2+. Ba2+ is a competitive inhibitor of both Ca2+ transport and Ca2+ binding to the low affinity sites. The Ki for the inhibition of Ca2+ transport by Ba2+ increases in the presence of K+ and Mg2+, which suggests a competition for the low affinity sites between the cations. The plot is still hyperbolic in the presence of La3+, which inhibits Ca2+ transport competitively. Ruthenium red which is a pure non-competitive inhibitor of mitochondrial Ca2+ transport, does not affect the shape of the kinetic plot. These results indicate that the surface potential, which depends on the ions bound to the low affinity sites, determines whether the kinetics of Ca2+ uptake in mitochondria is sigmoidal or hyperbolic.  相似文献   

4.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 microM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

5.
Summary Equations are developed to examine the effects of secondary active transport processes on the steady-state membrane potential of symmetrical cells. It is shown that, with suitable modifications, equations of the type developed by Goldman, Hodgkin and Katz may be derived to accommodate the contributions to the membrane potential of both electroneutral and electrogenic transporters. Where the membrane potential is function of the dominant medium ions (Na, K, and Cl), other contributions can come only from an electrogenic Na pump and from neutral co- and counter-transporters if, and only if, these involve the dominant ions. Experimental approaches to measure the parameters necessary to solve the equations developed here are discussed.  相似文献   

6.
1. The effect of theophylline on ion transport was examined using an in vitro short-circuited preparation of lizard colon. 2. Theophylline increased short circuit current (Isc) and transmural potential difference (PD). This increase caused by theophylline was accompanied by a small increase in transmural conductance (Gt). 3. Theophylline did not inhibit the absorption of Na+ but reversed Cl- absorption to secretion. This latter effect was due to an increase of the serosal-to-mucosal flux of Cl-. 4. Ion substitution experiments revealed that the effect of theophylline was Na+- and HCO3(-)-dependent and that these ions were required in the bathing solution. 5. These results with lizard colon are compared with those reported for mammalian colon and the mechanism of theophylline-induced Cl- secretion in these epithelia is discussed.  相似文献   

7.
Taurine, in concentrations greater than 10 mM, was found to have an inhibitory effect on passive calcium uptake and release in rat brain synaptosomal preparations. Amino acids similar to that of taurine in chemical structure, β-alanine, hypotaurine, homotaurine and γ-amino-butyric acid were also shown to inhibit calcium uptake in this preparation. Taurine, though, did not alter the permeability of these preparations to sodium or potassium. It thus appears that taurine and chemically related amino acids can alter calcium movements in these preparations. It is postulated that this effect is due to binding to specific taurine sites in the synaptosomal membranes.  相似文献   

8.
1. The effect of acetylcholine (ACh) on the ion transport of frog (Rana esculenta) sartorius muscles was studied. ACh was applied in bathing solution, Na influx and K efflux were measured using 24Na and 42K isotopes. 2. Na influx of sartorius muscles was increased by 1 mmol/1 ACh 2-10 fold depending on the experimental arrangement. The increase was greater if Na influx was measured at the beginning of ACh depolarization. During ACh treatment the Na influx took about the same time course as the depolarization recorded extracellularly. This type of recording approximately reflects the depolarization proceeding on the sartorius muscle fibres. 3. The presence of 31 nmol/l tetrodotoxin (TTX) did not modify the degree of increase of Na influx. 4. Rate coefficients for K efflux were increased 2-5 fold by ACh. The maximum rate coefficients were obtained in the first minute of ACh treatment. 5. Increase in K loss evolves also in the presence of 31 nmol/l TTX. The increase in rate coefficients was found to be about 30% less than without TTX in the first minute of ACh action. 6. The results indicate that in the presence of ACh the observed increase in Na influx and K efflux is brought about mainly by changes in Na and K conductance induced by ACh at the end-plates rather than by the action potentials accompanying ACh depolarization.  相似文献   

9.
T Y Tsong 《Biochemistry》1975,14(25):5409-5414
Binding of 8-anilino-1-naphthalenesulfonate to dimyristoyl-L-alpha-lecithin bilayers enhances the fluorescence quantum yield of the dye molecule by 100-fold. By following the generation of fluorescence after a rapid mixing in a stopped-flow apparatus (mixing time 2 msec), kinetics of the binding of the fluorescence probe to the phospholipid vesicles has been investigated in the temperature range where the crystal-liquid crystal phase transition of the bilayer structures occurs. No reactions depending on the dye or the vesicle concentrations were detected. This suggests that the initial adsorption of the dye was very rapid. Two kinetic phases which appear in the 50 msec and the second time ranges are unimolecular. The faster one has a small amplitude and is observable in the entire temperature range studied. In the phase transition region the slower reaction becomes the major kinetic phase. It also increases the apparent concentration of bound dye by a factor of 2. These observations suggest that the 50-msec reaction has detected a reorientation of the probe molecule after the initial binding, and that the slow reaction represents a transport of the dye molecule into the inner layer of the lipid vesicle. The transport reaction is extremely temperature sensitive and exhibits a maximum rate at the midpoint of the bilayer phase transition (Tm = 24.1 degrees). the Arrhenius plot of the transport reaction shows a maximum at the Tm. the same temperature dependence was also observed for the bromothymol blue transport reaction. However, no such effects were detected for less amphiphilic molecules such as tetracycline, chlortetracycline, and pyrene. In the latter systems only a slight bending of the Arrhenius plots were seen at the phase transition temperature. Since the kinetics of the transport of 8-anilino-1-naphthalenesulfonate is sensitive to the physical state of the phospholipid bilayers this reaction may be used for probing membrane structures.  相似文献   

10.
Charge-pulse relaxation experiments of valinomycin-mediated Rb+ transport have been carried out in order to study the influence of membrane structure on carrier kinetics. From the experimental data the rate constants of association (kR) and dissociation (kD) of the ion-carrier complex as well as the rate constants of translocation of the complex (kMS) and of the free carrier (kS) could be obtained. The composition of the planar bilayer membrane was varied in a wide range. In a first series of experiments, membranes made from glycerolmonooleate dissolved in different n-alkanes (n-decane to n-hexadecane), as well as solvent-free membranes made from the same lipid by the Montal-Mueller technique were studied. The translocation rate constants kS and kMS were found to differ by less than a factor of two in the membranes of different solvent content. Much larger changes of the rate constants were observed if the structure of the fatty acid residue was varied. For instance, an increase in the number of double bonds in the C20 fatty acid from one to four resulted in an increase of kS by a factor of seven and in an increase of kMS by a factor of twenty-four. The stability constant K = kR/kD of the ion-carrier complex as well as the translocation rate constants kS and kMS were found to depend strongly on the nature of the polar headgroup of the lipid. The incorporation of cholesterol into glycerolmonooleate membranes reduced kR, kMS and kS up to seven-fold.  相似文献   

11.
12.
13.
The covalent coupling of two gramicidin A monomers proved to be a useful tool for the rational design of ion channels with predictable electrophysiological properties (Stankovic, C.J., Heinemann, S.H., Delfino, J.M., Sigworth, F.J. and Schreiber, S.L. (1989) Science 244, 813-817; Stankovic, C.J., Heinemann, S.H. and Schreiber, S.L. (1990) J. Am. Chem. Soc. 112, 3702-3704). Herein we report on our first efforts to equip such channels with an artificial gating mechanism. Gramicidin monomers were covalently linked with 3,3'-azobis(benzeneacetic acid). Based on computer modeling of the beta-helix channel motif, this linker in its dark-adapted (trans) form does not allow for the formation of unimolecular ion channels, while the photo-activated (cis) form was expected to provide this possibility. The electrophysiological assays showed that (A) the trans-isomer does form characteristic ion channels, and (B) irradiation transforms these channels into a new distinct, flickering channel type in a reversible manner. The results are discussed in the framework of intermolecular gramicidin aggregates.  相似文献   

14.
Primate cells evolved a plasma membrane to restrict the loss of important molecules. The osmotic problems that then arose were solved in one of several ways. Of major importance was the evolution of specific ion pumps, to actively extrude those salts whose inward diffusion would have led to swelling and lysis. In addition, these pumps allowed the cell to store energy in the form of ion gradients across the membrane. Thus, even in the earliest stages, the evolution of ion transport systems coincided with the development of mechanisms which catalyzes the energy transformations. It is postulated that an "ATP"-driven proton pump was one of the first ion transport systems. Such a proton pump would extrude hydrogen ions from the cell, establishing both a transmembrane pH gradient (alkaline inside) and a membrane potential (negative inside). This difference in electrochemical potential for protons (the proton-motive force) could then drive a variety of essential membrane functions, such as the active transport of ions and nutrients. A second major advance was the evolution of an ion transport system that converted light energy into a form which could be used by the cell. The modern model for this is the "purple membrane" of Halobacterium halobium, which catalyzes the extrusion of protons after the capture of light. The protonmotive force generated by such a light-driven proton pump could then power net synthesis of ATP by a reversal of the ATP-driven proton pump. A third important evolutionary step associated with ion transport was the development of a system to harness energy released by biological oxidations. Again, the solution of this problem was to conserve energy as a protonmotive force by coupling the activity of a respiratory chain to the extrusion of protons. Finally, with the development of animal cells a more careful regulation of internal and external pH was required. Thus, an ATP-driven Na+-K+ pump replaced the proton-translocating ATPase as the major ion pump found in plasma membranes.  相似文献   

15.
Thermal injury kinetics in electrical trauma.   总被引:4,自引:0,他引:4  
The distribution of electrical current and the resultant Joule heating in tissues of the human upper extremity for a worst-case hand-to-hand high-voltage electrical shock was modelled by solving the Bioheat equation using the finite element method. The model of the upper extremity included skin, fat, skeletal muscle, and bone. The parameter sets for these tissues included specific thermal and electrical properties and their respective tissue blood flow rates. The extent of heat mediated cellular injury was estimated by using a damage rate equation based on a single energy barrier chemical reaction model. No cellular injury was assumed to occur for temperatures less than 42 degrees C. This model was solved for the duration of Joule heating required to produce membrane damage in cells, termed the lethal time (of contact) for injury. LT's were determined for contact voltages ranging from 5 to 20 kV. For a 10,000 volt electrical shock LT's for skeletal muscle are predicted to be: 0.5 second in the distal forearm, 1.1 second in the mid-forearm, 1.2 second in the proximal elbow, and 2.0 seconds in the mid-arm. This analysis of the electrical shock provides useful insight into the mechanisms of resultant tissue damage and provides important performance guidelines for the development of safety devices.  相似文献   

16.
《Plant Science Letters》1978,11(3-4):233-239
The loading of [14C] sucrose into the phloem from the apoplast of hollow Ricinus petioles was stimulated by fusicoccin (FC, 10 mg l−1), by indole-3-acetic-acid (IAA; 10−2 mol m−3) and inhibited by abscisic acid (ABA 10−2 mol m−3) when added to a buffered perfusing solution of 2% sucrose and 30 mol m−3 KCl. A proton efflux was detected in the hollow petiole which was stimulated by FC in the presence of K+, insensitive to IAA, and inhibited by ABA, when present in the perfusing solution.The observed results are consistent with an H+/K+ exchange between the phloem sap and the apoplast which is responsible for the high pH and high [K+ of phloem saps. The resultant pH gradient between the phloem sap and the apoplast provides the energy for the proton co-transport of sucrose in phloem loading.  相似文献   

17.
Summary The effect of addition of FeCl3 to the media bathing the isolated skin ofRana pipiens was studied by measuring short-circuit current, transepithelial potential, and resistance, and by determining the influx and efflux of sodium (J 13 Na andJ 31 Na , respectively) and the influx and efflux of chloride (J 13 Cl andJ 31 Cl , respectively) across the epithelium. With normal Ringer's solution on both sides of the skin, addition of 10–3 m FeCl3 to the external medium resulted in nearly complete inhibition of active Na transport (J 13 Na decreased from 1.30±0.14 to 0.10±0.04 eq/cm2 hr (N=8)) and in appearance of active chloride transport in outward direction due to an 80% increase inJ 31 Cl . Average (J 31 ClJ 13 Cl ) obtained from means of 8 skins in 6 consecutive control and last 3 experimental periods was –0.17±0.04 and 0.38±0.05 eq/cm2 hr, respectively. FeCl3 added to external medium also induced substantial net chloride movement in outward direction when external medium contained Na-free choline chloride Ringer's or low ionic strength solution. Under the latter condition net Na movement was virtually eliminated by external FeCl3. After addition of FeCl3 to serosal medium there was delayed inhibition ofJ 13 Na but no change in chloride fluxes. Immediate and profound changes in Na and Cl transport systems seen after external application of FeCl3 indicate charge effects of Fe3+ on surface of apical cell membranes, possibly close to or in ion channels.  相似文献   

18.
19.
Calcium ion transport in mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号