首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ho J  Chen H  Lebrun JJ 《Cellular signalling》2007,19(7):1565-1574
We previously identified a critical serine/threonine residue within the linker domain of Smad2/3, phosphorylated by the kinase GRK2 which plays a critical role in regulating Smad signaling. To define the mechanism by which GRK2-mediated phosphorylation modifies Smad2/3 behavior at the molecular level, we generated mutant Smads where the GRK2 phosphorylation site was replaced with an aspartic acid (D) to mimic the properties of a phospho-residue or an alanine (A) as a control. Interestingly, overexpression of either the D or A mutant inhibits TGFbeta signaling, but through two distinct mechanisms. The D mutant is properly localized and released from the plasma membrane upon ligand stimulation, but fails to interact with the type I receptor kinase. The A mutant properly interacts with and is phosphorylated by the type I receptor, translocates to the nucleus and homodimerizes with wild-type R-Smads, but it fails to form a heterocomplex with Smad4. As a result, both mutants act as antagonists of endogenous TGFbeta signaling through divergent mechanisms. The D mutant acts by blocking endogenous R-Smads phosphorylation and the A mutant acts by preventing endogenous R-Smad/Smad4 heterocomplexes. Thus, mutation of the GRK2 phosphorylation site within the Smad generates dominant negative Smads that efficiently inhibit TGFbeta responses.  相似文献   

2.
A yeast two-hybrid screen was utilized to identify novel Smad 3 binding proteins expressed in developing mouse orofacial tissue. Three proteins (Erbin, Par-3, and Dishevelled) were identified that share several similar structural and functional characteristics. Each contains at least one PDZ domain and all have been demonstrated to play a role in the establishment and maintenance of cell polarity. In GST (glutathione S-transferase) pull-down assays, Erbin, Par-3, and Dishevelled bound strongly to the isolated MH2 domain of Smad 3, with weaker binding to a full-length Smad 3 protein. Failure of Erbin, Par-3, and Dishevelled to bind to a Smad 3 mutant protein that was missing the MH2 domain confirms that the binding site resides within the MH2 domain. Erbin, Par-3, and Dishevelled also interacted with the MH2 domains of other Smads, suggesting broad Smad binding specificity. Dishevelled and Erbin mutant proteins, in which the PDZ domain was removed, still retained their ability to bind Smad 3, albeit with lower affinity. While transforming growth factor beta (TGFbeta) has been suggested to alter cell polarity through a Smad-independent mechanism involving activation of members of the RhoA family of GTP binding proteins, the observation that Smads can directly interact with proteins involved in cell polarity, as shown in the present report, suggests an additional means by which TGFbeta could alter cell polarity via a Smad-dependent signaling mechanism.  相似文献   

3.
4.
5.
6.
7.
8.
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.  相似文献   

9.
Endoglin is an accessory receptor for transforming growth factor beta (TGFbeta) in endothelial cells, essential for vascular development. Its pivotal role in angiogenesis is underscored in Endoglin null (Eng-/-) murine embryos, which die at mid-gestation (E10.5) from impaired yolk sac vessel formation. Moreover, mutations in endoglin and the endothelial-specific TGFbeta type I receptor, ALK1, are linked to hereditary hemorrhagic telangiectasia. To determine the role of endoglin in TGFbeta pathways, we derived murine endothelial cell lines from Eng+/+ and Eng-/- embryos (E9.0). Whereas Eng+/+ cells were only partially growth inhibited by TGFbeta, Eng-/- cells displayed a potent anti-proliferative response. TGFbeta-dependent Smad2 phosphorylation and Smad2/3 translocation were unchanged in the Eng-/- cells. In contrast, TGFbeta treatment led to a more rapid activation of the Smad1/5 pathway in Eng null cells that was apparent at lower TGFbeta concentrations. Enhanced activity of the Smad1 pathway in Eng-/- cells was reflected in higher expression of ALK1-dependent genes such as Id1, Smad6, and Smad7. Analysis of cell surface receptors revealed that the TGFbeta type I receptor, ALK5, which is required for ALK1 function, was increased in Eng-/- cells. TGFbeta receptor complexes were less numerous but displayed a higher binding affinity. These results suggest that endoglin modulates TGFbeta signaling in endothelial cells by regulating surface TGFbeta receptors and suppressing Smad1 activation. Thus an altered balance in TGFbeta receptors and downstream Smad pathways may underlie defects in vascular development and homeostasis.  相似文献   

10.
11.
12.
13.
Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.  相似文献   

14.
15.
16.
17.
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by congenital malformation of the great toes and by progressive heterotopic bone formation in muscle tissue. Recently, a mutation involving a single amino acid substitution in a bone morphogenetic protein (BMP) type I receptor, ALK2, was identified in patients with FOP. We report here that the identical mutation, R206H, was observed in 19 Japanese patients with sporadic FOP. This mutant receptor, ALK2(R206H), activates BMP signaling without ligand binding. Moreover, expression of Smad1 and Smad5 was up-regulated in response to muscular injury. ALK2(R206H) with Smad1 or Smad5 induced osteoblastic differentiation that could be inhibited by Smad7 or dorsomorphin. Taken together, these findings suggest that the heterotopic bone formation in FOP may be induced by a constitutively activated BMP receptor signaling through Smad1 or Smad5. Gene transfer of Smad7 or inhibition of type I receptors with dorsomorphin may represent strategies for blocking the activity induced by ALK2(R206H) in FOP.  相似文献   

18.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   

19.
20.
The transforming growth factor-beta (TGFbeta) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGFbeta on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGFbeta action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGFbeta. In the current study, elements of the Smad component of the TGFbeta intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGFbeta1, TGFbeta2, and TGFbeta3 was demonstrated. TGFbeta-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGFbeta-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGFbeta signaling system in cells of the developing murine palate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号