首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis, overlap geographically as well as in their host ranges. Adult female swallowtails are incapable of distinguishing between damaged and undamaged leaves, and the opportunities for competition between these two species are numerous. We designed field and laboratory experiments to look for evidence of indirect competition between P. canadensis and L. dispar larvae. Swallowtail caterpillars were reared in the laboratory on leaves from gypsy-moth-defoliated and undefoliated trees to explore host-plant effects. We tested for pathogen-mediated interactions by rearing swallowtail larvae on both sterilized and unsterilized leaves from defoliated and undefoliated sources. In addition, we measured the effects of known gypsy moth pathogens, as well as gypsy moth body fluids, on the growth and survival of swallowtail larvae. Field experiments were designed to detect the presence of parasitoid-mediated competition, as well: we recorded parasitism of swallowtail caterpillars placed in the field either where there were no gypsy moth larvae present, or where we had artificially created dense gypsy moth populations. We found evidence that swallowtails were negatively affected by gypsy moths in several ways: defoliation by gypsy moths depressed swallowtail growth rate and survival, whether leaves were sterilized or not; sterilization significantly reduced the effect of defoliation, and gypsy moth body fluids proved lethal; and swallowtail caterpillars suffered significantly increased rates of parasitism when they were placed in the field near gypsy moth infestations.  相似文献   

2.
Few studies have addressed how plant chemical defenses that directly affect herbivores in turn affect consumption patterns of vertebrates at higher trophic levels. We studied how variable foliar chemistry of trembling aspen ( Populus tremuloides Michx.) affects the diet preferences of an avian insectivore feeding on an introduced herbivore, the gypsy moth ( Lymantria dispar L.).
Black-capped chickadees ( Poecile atricapilla ) were offered paired choices of gypsy moth caterpillars feeding on one of three genotypes of aspen that differed in chemical composition. Chickadees chose to eat caterpillars fed aspen foliage with low levels of both condensed tannins and phenolic glycosides, or caterpillars fed foliage with high levels of tannins and low levels of phenolic glycosides, over caterpillars fed foliage with low levels of condensed tannins and high levels of phenolic glycosides. In addition, diet choices of the birds were affected by their previous experience. These findings are consistent with the "extended phenotype" concept, in that genetically-based chemical traits in an ecologically dominant plant influence the feeding behavior of third trophic level organisms, whose efficacy as regulators of herbivore populations may in turn be modified.  相似文献   

3.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

4.
Plants are regularly colonised by fungi and bacteria, but plant‐inhabiting microbes are rarely considered in studies on plant–herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici‐populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust‐infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus‐infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant–herbivore interactions.  相似文献   

5.
The survival of insect herbivores on chemically defended plants may often depend on their ability to metabolize these defense compounds. However, only little knowledge is available on how insects actually process most plant defense compounds. We investigated the metabolism of salicinoids, a major group of phenolic glycosides in poplar and willow species, by a generalist herbivore, the gypsy moth (Lymantria dispar). Seven salicinoid metabolites identified in gypsy moth caterpillar feces were mostly conjugates with glucose, cysteine or glycine. Two of the glucosides were phosphorylated, a feature not previously reported for insect metabolites of plant defense compounds. The origins of these metabolites were traced to specific moieties of three major poplar salicinoids ingested, salicin, salicortin and tremulacin. Based on the observed metabolite patterns we were able to deduce the initial steps of salicinoid breakdown in L. dispar guts, which involves cleavage of ester bonds. The conjugated molecules were effectively eliminated within 24 h after ingestion. Some of the initial breakdown products (salicin and catechol) demonstrated negative effects on insect growth and survival in bioassays on artificial diets. Gypsy moth caterpillars with prior feeding experience on salicinoid-containing poplar foliage converted salicinoids to the identified metabolites more efficiently than caterpillars pre-fed an artificial diet. The majority of the metabolites we identified were also produced by other common poplar-feeding insects. The conversion of plant defenses like salicinoids to a variety of water-soluble sugar, phosphate and amino acid conjugates and their subsequent excretion fits the general detoxification strategy found in insect herbivores and other animals.  相似文献   

6.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

7.
1. Induced plant responses can affect herbivores either directly, by reducing herbivore development, or indirectly, by affecting the performance of natural enemies. Both the direct and indirect impacts of induction on herbivore and parasitoid success were evaluated in a common experimental system, using clonal poplar trees Populus nigra (Salicales: Salicaceae), the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and the gregarious parasitoid Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae). 2. Female parasitoids were attracted to leaf odours from both damaged and undamaged trees, however herbivore‐damaged leaves were three times more attractive to wasps than undamaged leaves. Parasitoids were also attracted to herbivore larvae reared on foliage and to larval frass, but they were not attracted to larvae reared on artificial diet. 3. Prior gypsy moth feeding elicited a systemic plant response that retarded the growth rate, feeding, and survival of gypsy moth larvae, however induction also reduced the developmental success of the parasitoid. 4. The mean number of parasitoid progeny emerging from hosts fed foliage from induced trees was 40% less than from uninduced trees. In addition, the proportion of parasitised larvae that survived long enough to issue any parasitoids was lower on foliage from induced trees. 5. A conceptual and analytical model is provided to describe the net impacts of induced plant responses on parasitoids, and implications for tritrophic interactions and biological control of insect pests are discussed.  相似文献   

8.
Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant–insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium‐labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore‐induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.  相似文献   

9.
Summary We investigated the effects of nitrogen fertilization upon the concentrations of nitrogen, condensed tannin and phenolic glycosides of young quaking aspen (Populus tremuloides) leaves and the quality of these leaves as food for larvae of the large aspen tortrix (Choristoneura conflictana), a Lepidopteran that periodically defoliates quaking aspen growing in North America. Nitrogen fertilization resulted in decreased concentrations of condensed tannin and phenolic glycosides in aspen leaves and an increase in their nitrogen concentration and value as food for the large aspen tortrix. These results indicate that plant carbon/nutrient balance influences the quality of aspen leaves as food for the large aspen tortrix in two ways, by increasing the concentrations of positive factors (e.g. nitrogen) and decreasing the concentrations of negative factors (eg. carbon-based secondary metabolites) in leaves. Addition of purified aspen leaf condensed tannin and a methanol extract of young aspen leaves that contained condensed tannin and phenolic glycosides to artificial diets at high and low levels of dietary nitrogen supported this hypothesis. Increasing dietary nitrogen increased larval growth whereas increasing the concentrations of condensed tannin and phenolic glycosides decreased growth. Additionally, the methanol extract prevented pupation. These results indicate that future studies of woody plant/insect defoliator interactions must consider plant carbon/nutrient balance as a potentially important control over the nutritional value of foliage for insect herbivores.  相似文献   

10.
【目的】为探讨外源茉莉酸(jasmonic acid, JA)诱导的青杨 Populus cathayana Rehd.抗性对舞毒蛾 Lymantria dispar (L.)幼虫食物利用的影响。【方法】在室内对青杨苗木喷施0.001和0.1 mmol/L两种浓度的茉莉酸,对照喷0.2%的丙酮水溶液,喷施后1, 5和10 d分别采集叶片,分析其初生和次生物质含量的变化。另选喷施0.1 mmol/L茉莉酸的青杨苗木,喷施后1, 5和10 d分别接舞毒蛾2龄幼虫,单头饲养,测定其取食量、体重和排粪量及发育历期,统计分析其食物消化率、转化率和利用率。【结果】两种浓度茉莉酸处理均使青杨叶片中的蛋白质和可溶性糖含量降低,而木质素、单宁、黄酮和酚类物质含量增加。蛋白质和可溶性糖在处理第10天时含量最低,其中高浓度茉莉酸处理较对照分别降低46.5%和49.1%,低浓度处理分别降低30.6%和22.8%。叶片中酚类物质含量在高浓度处理第10 天时增幅最大,较对照增加102%。木质素、黄酮和单宁酸在处理第5天时的含量最高,其中高浓度处理分别较对照增加113%, 75%和57%。用0.1 mmol/L茉莉酸诱导处理后,舞毒蛾2龄幼虫对叶片的消化率、转化率和利用率均有所降低, 取食处理后1, 5和10 d的青杨叶片的食物利用率较对照分别降低了29.4%, 27.6%和28.2%,且幼虫体重降低、发育历期延长。【结论】结果提示外源茉莉酸诱导青杨可对舞毒蛾产生明显的生化抗性,实践中可利用这种生化抗性防治舞毒蛾的危害。  相似文献   

11.
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9..Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.  相似文献   

12.
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root‐to‐shoot signaling.  相似文献   

13.
We examined the effects of various wounding treatments and genotypic variation on induced resistance in Populus (Salicales: Salicaceae) against herbivory by the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Second-instar larvae grew and consumed less on leaves from induced than non-induced trees. Likewise, larvae preferred leaf disks from non-induced trees. Among induction treatments, gypsy moth feeding had the strongest and most consistent effect in behavioral choice tests. Mechanical wounding of leaves and mechanical wounding plus application of gypsy moth regurgitant had intermediate effects, while application of jasmonic acid had the weakest overall effect. Under no-choice conditions, there were no consistent trends across clones in the ability of various treatments to elicit plant responses affecting the herbivore. Levels of constitutive and inducible resistance to herbivory varied significantly among 12 Populus clones. Larvae grew up to 30-fold more, and consumed up to 250-fold more on the most suitable than the least suitable clone. Prior feeding by gypsy moths reduced larval feeding up to 71.4% on the most highly inducible clone, but it had little or no effect for the least inducible clones. There was no evidence for a relationship between levels of inducible and constitutive resistance, or between inducible resistance and phylogenetic relatedness among clones. We discuss implications for the ecology and evolution of plant-insect interactions and the management of insect pests. Received: 12 October 1998 / Accepted: 22 March 1999  相似文献   

14.
? Here, we examined the impact of jasmonate (JA) treatment, branching and phloem girdling on 13C and 1?N import, invertase activity and polyphenol accumulation in juvenile tissues of unbranched and branched hybrid poplar saplings (Populus nigra?×?P. deltoides). ? The import of 13C to juvenile tissues was positively correlated with invertase activity at the treatment site and enhanced by JA. Both invertase activity and 13C import were greater in shorter, younger branches and smaller, younger leaves. By contrast, JA treatments, branching and girdling had little or no impact on 1?N import. ? In poplar saplings with multiple lateral branches, we observed almost no 13C movement from subtending source leaves into lateral branches above them, with or without JA treatment. The presence of potentially competing branches, treated with JA or not, girdled or not, had no impact on carbohydrate (CHO) import or polyphenol accumulation in target branches. ? We conclude that poplar branches comprise modules that are relatively independent from each other and from the stem below in terms of CHO movement, carbon-based defence production and response to elicitors. By contrast, branches are closely linked modules in terms of nitrogen movement. This should produce trees that are highly heterogeneous in quality for herbivores.  相似文献   

15.
As the range of the invasive and highly polyphagous gypsy moth (Lymantria dispar) expands, it increasingly overlaps with forest areas that have been subject to invasion by non-native shrubs. We explored the potential for interactions between these co-occurring invasions through a gypsy moth feeding trial using the following three highly invasive, exotic shrubs: honeysuckle (Lonicera maackii), privet (Ligustrum sinense) and burning bush (Euonymus alatus). We compared these with two native shrubs: spicebush (Lindera benzoin) and pawpaw (Asimina triloba). We fed gypsy moth caterpillars foliage exclusively from one of the five shrubs and measured their relative consumptive rate (RCR), relative growth rate (RGR), and development time (DT). The RCR of gypsy moth was strongly influenced by the species of foliage (F = 31.9; P < 0.0001) with little or no consumption of honeysuckle and privet. Caterpillar RGR was influenced by the shrub species (F = 66.2; P < 0.0001), and those caterpillars fed spicebush, honeysuckle or privet lost weight over the course of the assay. Caterpillar DT was also significantly (F = 11.79, P < 0.0001) influenced by the shrub species and those fed honeysuckle, privet and spicebush died prior to molting. Overall, our data suggest that honeysuckle, privet, and spicebush could benefit (indirectly) from the invasion of gypsy moth, while burning bush and pawpaw could be negatively impacted due to direct effects (herbivory). Similarly, invading gypsy moth populations could be sustained on a shrub layer of burning bush and pawpaw in the event of canopy defoliation. Further field and laboratory analysis is needed to clarify herbivore resistance of invasive shrubs, and to investigate the potential interactions among co-occurring insect and plant invasions.  相似文献   

16.
After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (−)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling.  相似文献   

17.
Polyphenol oxidase (PPO) is commonly believed to function as an effective antiherbivore defense in plants. PPO is induced in plants following herbivory, and insect performance is often negatively correlated with PPO levels. However, induced defenses create numerous changes in plants, and very little work has been done to test the direct effects of PPO on insect herbivores separately from other changes. This study examined the impacts of high levels of PPO on the performance of two species of tree-feeding caterpillars (Lymantria dispar and Orgyia leucostigma) on poplar. Transgenic PPO-overexpressing poplar (Populus tremula × Populus alba) was used as a source of elevated-PPO leaves, thereby controlling for the multiple effects of induction. In addition, the impacts of treating poplar foliage with high levels of purified mushroom PPO were examined on the two caterpillar species. Contrary to expectation, in several cases increased PPO levels had no significant effect on insect consumption or growth rates. Although one of the mechanisms by which PPO is believed to impact herbivores is via increased oxidative stress, the ingestion of large amounts of PPO had little or no effect on semiquinone radical and oxidized protein levels in the gut contents of lymantriid caterpillars. PPO activity in caterpillars is likely limited by the low oxygen and high ascorbate levels commonly found in their gut contents. This study questions whether induced PPO functions as an effective post-ingestive defense against tree-feeding caterpillars, and indicates that controlled, mechanistic studies are needed in other plant–herbivore systems to test for a direct effect of PPO on insect performance.  相似文献   

18.
The process of selecting certain desirable traits for plant breeding may compromise other potentially important traits, such as defences against pests; however, specific phenotypic changes occurring over the course of domestication are unknown for most domesticated plants. Cranberry (Vaccinium macrocarpon) offers a unique opportunity to study such changes: its domestication occurred recently, and we have access to the wild ancestors and intermediate varieties used in past crosses. In order to investigate whether breeding for increased yield and fruit quality traits may indirectly affect anti-herbivore defences, the chemical defences have been examined of five related cranberry varieties that span the history of domestication against a common folivore, the gypsy moth (Lymantria dispar). Direct defences were assessed by measuring the performance of gypsy moth caterpillars and levels of phenolic compounds in leaves, and indirect defences by assaying induced leaf volatile emissions. Our results suggest that breeding in cranberry has compromised plant defences: caterpillars performed best on the derived NJS98-23 (the highest-yielding variety) and its parent Ben Lear. Moreover, NJS98-23 showed reduced induction of volatile sesquiterpenes, and had lower concentrations of the defence-related hormone cis-jasmonic acid (JA) than ancestral varieties. However, induced direct defences were not obviously affected by breeding, as exogenous JA applications reduced caterpillar growth and increased the amounts of phenolics independent of variety. Our results suggest that compromised chemical defences in high-yielding cranberry varieties may lead to greater herbivore damage which, in turn, may require more intensive pesticide control measures. This finding should inform the direction of future breeding programmes.  相似文献   

19.
We examined the effects of CO2-mediated changes in the foliar chemistry of paper birch (Betula papyrifera) and white pine (Pinus strobus) on performance of the gypsy moth (Lymantria dispar). Trees were grown under ambient or enriched CO2 conditions, and foliage was subjected to plant chemical assays and insect bioassays. Enriched CO2 atmospheres reduced foliar nitrogen levels and increased condensed tannin levels in birch but not in pine. Foliar carbohydrate concentrations were not markedly altered by CO2 environment. Gypsy moth performance was significantly affected by CO2 level, species, and the CO2 x species interaction. Under elevated CO2 conditions, growth was reduced for larvae fed birch, while development was prolonged for larvae fed pine. Although gypsy moths performed better overall on birch than pine, birch-fed larvae were influenced more by CO2-mediated changes in host quality.  相似文献   

20.
Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号