首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate–polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2CO3-degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.  相似文献   

2.
Recently tremendous progress has been evidenced by the advancements in developing innovative three-dimensional(3 D)scaffolds using various techniques for addressing the autogenous grafting of bone. In this work, we demonstrated the fabrication of porous polycaprolactone(PCL) scaffolds for osteogenic differentiation based on supercritical fluid-assisted hybrid processes of phase inversion and foaming. This eco-friendly process resulted in the highly porous biomimetic scaffolds with open and interconnected architectures. Initially, a 2~3 factorial experiment was designed for investigating the relative significance of various processing parameters and achieving better control over the porosity as well as the compressive mechanical properties of the scaffold. Then, single factor experiment was carried out to understand the effects of various processing parameters on the morphology of scaffolds. On the other hand, we encapsulated a growth factor, i.e., bone morphogenic protein-2(BMP-2), as a model protein in these porous scaffolds for evaluating their osteogenic differentiation. In vitro investigations of growth factor loaded PCL scaffolds using bone marrow stromal cells(BMSCs) have shown that these growth factor-encumbered scaffolds were capable of differentiating the cells over the control experiments. Furthermore, the osteogenic differentiation was confirmed by measuring the cell proliferation, and alkaline phosphatase(ALP) activity, which were significantly higher demonstrating the active bone growth. Together, these results have suggested that the fabrication of growth factor-loaded porous scaffolds prepared by the eco-friendly hybrid processing efficiently promoted the osteogenic differentiation and may have a significant potential in bone tissue engineering.  相似文献   

3.
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze‐drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers.  相似文献   

4.
Stem cell-based tissue engineering shows promise for bone regeneration and requires artificial microenvironments to enhance the survival, proliferation and differentiation of the seeded cells. Silk fibroin, as a natural protein polymer, has unique properties for tissue regeneration. The present study aimed to evaluate the influence of porous silk scaffolds on rat bone marrow stem cells (BMSCs) by lenti-GFP tracking both in vitro and in vivo in cranial bone defects. The number of cells seeded within silk scaffolds in rat cranial bone defects increased from 2 days to 2 weeks after implantation, followed by a decrease at eight weeks. Importantly, the implanted cells survived for 8 weeks in vivo and some of the cells might differentiate into endothelial cells and osteoblasts induced by the presence of VEGF and BMP-2 in the scaffolds to promote angiogenesis and osteogenesis. The results demonstrate that porous silk scaffolds provide a suitable niche to maintain long survival and function of the implanted cells for bone regeneration.  相似文献   

5.
Poly‐vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly‐vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo‐matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo‐bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 271–284, 2015.  相似文献   

6.
Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds.  相似文献   

7.
Different biomaterials have been proposed as scaffolds for the delivery of cells and/or biological molecules to repair or regenerate damaged or diseased bone tissues. Particular attention is being given to porous bioceramics that mimic trabecular bone chemistry and structure. Chemical composition, density, pore shape, pore size, and pore interconnection are elements that have to be considered to improve the efficiency of these biomaterials. Commonly, two-dimensional (2D) systems of analysis such as scanning electron microscope (SEM) are used for the characterization and comparison of the scaffolds. Unfortunately, these systems do not allow a complete investigation of the three-dimensional (3D) spatial structure of the scaffold. In this study, we have considered two different techniques, that is, SEM and 3D synchrotron radiation (SR) micro-CT to extract information on the geometry of two hydroxyapatite (HA) bioceramics with identical chemical composition but different micro-porosity, pore size distribution, and pore interconnection pathway. The two scaffolds were obtained with two different procedures: (a) sponge matrix embedding (scaffold FB), and (b) foaming (scaffold EP). Both scaffolds showed structures suitable for tissue-engineering applications, but scaffold EP appeared superior with regard to interconnection of pores, surface on which the new bone could be deposited, and percentage of volume available to bone deposition.  相似文献   

8.
The ability to treat osteochondral defects is a major clinical need. Existing polymer systems cannot address the simultaneous requirements of regenerating bone and cartilage tissues together. The challenge still lies on how to improve the integration of newly formed tissue with the surrounding tissues and the cartilage-bone interface. This study investigated the potential use of different silk fibroin scaffolds: mulberry (Bombyx mori) and non-mulberry (Antheraea mylitta) for osteochondral regeneration in vitro and in vivo. After 4 to 8 weeks of in vitro culture in chondro- or osteo-inductive media, non-mulberry constructs pre-seeded with human bone marrow stromal cells exhibited prominent areas of the neo tissue containing chondrocyte-like cells, whereas mulberry constructs pre-seeded with human bone marrow stromal cells formed bone-like nodules. In vivo investigation demonstrated neo-osteochondral tissue formed on cell-free multi-layer silk scaffolds absorbed with transforming growth factor beta 3 or recombinant human bone morphogenetic protein-2. Good bio-integration was observed between native and neo-tissue within the osteochondrol defect in patellar grooves of Wistar rats. The in vivo neo-matrix formed comprised of a mixture of collagen and glycosaminoglycans except in mulberry silk without growth factors, where a predominantly collagenous matrix was observed. Immunohistochemical assay showed stronger staining of type I and type II collagen in the constructs of mulberry and non-mulberry scaffolds with growth factors. The study opens up a new avenue of using inter-species silk fibroin blended or multi-layered scaffolds of a combination of mulberry and non-mulberry origin for the regeneration of osteochondral defects.  相似文献   

9.
ObjectivesLarge bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin‐inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects.Materials and MethodsThe salt‐leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo.ResultsThe porous NG/SF/HAp scaffold had a well‐designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord‐derived mesenchymal stem cells (hUCMSCs) cultured on SF‐nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold.ConclusionsThe data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.  相似文献   

10.
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.  相似文献   

11.
The design of porous scaffolds for tissue engineering requires methods to generate geometries in order to control the stiffness and the permeability of the implant among others characteristics. This article studied the potential of the reaction-diffusion systems to design porous scaffolds for bone regeneration. We simulate the degradation of the scaffold material and the formation of new bone tissue over canal-like, spherical and ellipsoid structures obtained by this approach. The simulations show that the degradation and growth rates are affected by the form of porous structures. The results have indicated that the proposed method has potential as a tool to generate scaffolds with internal porosities and is comparable with other methodologies to obtain this type of structures.  相似文献   

12.
We have developed microcarriers made from silk fibroin. Microcarriers can be used as a substrate for cell cultivation and cell delivery during cell-based therapy and for the construction of bioengineered tissue. Fibroin microcarriers were mineralized, which led to the appearance of calcium phosphate crystals on their surface. The ability of mineralized and nonmineralized microcarriers to support osteogenic differentiation of the osteoblast-like cell line MG-63 was estimated by alkaline phosphatase activity, an early marker of bone formation. The experiment showed cells actively proliferating on the surface of both mineralized and nonmodified microcarriers. Culturing MG-63 on the surface of fibroin microcarriers resulted in an increase of alkaline phosphatase activity indicative of osteogenic differentiation of MG-63 cells in the absence of inductors. The level of alkaline phosphatase was higher when mineralized microcarriers were used. Alkaline phosphatase activity of MG-63 cells cultivated using traditional two-dimensional approaches were close to zero. As opposed to conventional monolayer culturing, microcarrier culture cells are in a three-dimensional environment that is closer to physiological conditions. This can have a significant impact on their morphology and functional properties. During this study, we also characterized mechanical properties of porous scaffolds used for microcarriers.  相似文献   

13.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

14.
A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.  相似文献   

15.
Recently tissue engineering has escalated much interest in biomedical and biotechnological applications. In this regard, exploration of new and suitable biomaterials is needed. Silk fibroin protein is used as one of the most preferable biomaterials for fabrication of scaffolds and several new techniques are being adopted to fabricate silk scaffolds with greater ease, efficiency and perfection. In this study, a freeze gelation technique is used for fabrication of silk fibroin protein 3D scaffolds, which is both time and energy efficient as compared to the conventional freeze drying technique. The fabricated silk fibroin freeze-gelled scaffolds are evaluated micro structurally for morphology with scanning electron microscopy which reveals relatively homogeneous pore structure and good interconnectivity. The pore sizes and porosity of these scaffolds ranges between 60-110 μm and 90-95%, respectively. Mechanical test shows that the compressive strength of the scaffolds is in the range of 20-40 kPa. The applicability to cell culture of the freeze gelled scaffolds has been examined with human keratinocytes HaCat cells which show the good cell viability and proliferation of cells after 5 days of culture suggesting the cytocompatibility. The freeze-gelled 3D scaffolds show comparable results with the conventionally prepared freeze dried 3D scaffolds. Thus, this technique may be used as an alternative method for 3D scaffolds preparation and may also be utilized for tissue engineering applications.  相似文献   

16.
Recent advances in bone tissue engineering scaffolds   总被引:1,自引:0,他引:1  
Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved.  相似文献   

17.
The use of hydroxyapatite (HA) scaffolds for bone regeneration is an alternative procedure to treat bone defects due to cancer, other diseases or traumas. Although the use of HA has been widely studied in the literature, there are still some disparities regarding its mechanical performance. This paper presents a complete analysis of the structural performance of porous HA scaffolds based on experimental tests, numerical simulations and theoretical studies. HA scaffolds with variable porosity were considered and fabricated by the water-soluble polymer method, using poly vinyl alcohol as pore former. These scaffolds were then characterised by scanning electron microscopy, stereo microscopy, X-ray diffraction, porosity analysis and mechanical tests. Different scaffold models were proposed and analysed by the finite element method to obtain numerical predictions of the mechanical properties. Also theoretical predictions based on the (Gibson LJ, Ashby MF. 1988. Cellular solids: structure and properties. Oxford: Pergamon Press) model were obtained. Finally the experimental, numerical and theoretical results were compared. From this comparison, it was observed that the proposed numerical and theoretical models can be used to predict, with adequate accuracy, the mechanical performance of HA scaffolds for different porosity values.  相似文献   

18.
In this study, the electrospun silk fibroin nanofibrous scaffolds were modified with heparin by grafting after plasma treatment and blending electrospinning. Morphology, microstructure, chemical composition and grafting efficiency of the heparin-modified silk fibroin nanofibrous scaffolds were characterized to evaluate the effect of modification by means of scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectrometer (XPS). The results showed that the heparin was successfully introduced to the silk fibroin nanofibrous scaffolds by both the two kinds of modification, and there was a hydrogen bonding between the silk fibroin and heparin. Moreover, the hydrophilicity, O-containing groups and negative charge density of the heparin-modified scaffolds were enhanced. In vitro coagulation time tests showed that the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) of the heparin-modified scaffolds were much higher than those of the pure silk fibroin scaffolds. L929 fibroblasts and EVCs spread and proliferated better on the heparin-modified scaffolds than on the pure silk fibroin scaffolds. Macrophages, neutrophils and lymphocytes were not observed in the heparin-modified scaffolds, which indicated that the modified scaffolds could induce minor inflammation in vivo. The results indicated that the electrospun heparin-modified silk fibroin nanofibrous scaffolds could be considered as ideal candidates for tissue engineering scaffolds.  相似文献   

19.
Mao X  Chu CL  Mao Z  Wang JJ 《Tissue & cell》2005,37(5):349-357
The purposes of this study were to develop a new cultural method for the rat bone marrow stromal cells (MSCs) to differentiate into osteoblasts well in vitro, and to investigate the feasibility of using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds for constructing tissue-engineered bone. MSCs of rats were isolated, cultured, induced to differentiate into osteoblasts, and then observed with inverted microscopy. Histochemical staining and radio-immunological analysis were applied for identifying MSCs. Whereafter MSCs were seeded onto three-dimensional porous nano-hydroxylapatite scaffolds, and scanning electron microscopy was applied to evaluate their growth on scaffolds. Results showed that MSCs were typical fibroblast-like and possessed a better proliferating capability; the activity of alkaline phosphatase (ALP) and the secretion of osteocalcin of MSCs were produced gradually and increased continuously; the cells seeded on three-dimensional porous nano-hydroxylapatite scaffolds adhered, proliferated and differentiated well. These results demonstrated that the new improved culture method had the advantages of short isolating time, less risk of contamination and higher efficiency and accordingly was conducive to MSCs proliferating and differentiating into osteoblasts, and that it was advantageous to constructing tissue-engineered bone using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds.  相似文献   

20.
The term tissue engineering is the technology that combines cells, engineering and biological/synthetic material in order to repair, replace or regenerate biological tissues such as bone, muscle, tendons and cartilage. The major human applications of tissue engineering are: skin, bone, cartilage, corneas, blood vessels, left mainstem bronchus and urinary structures. In this systematic review several criteria were identified as the most desirable characteristics of an ideal scaffold. These state that an ideal scaffolds needs to be biodegradable, possess mechanical strength, be highly porous, biocompatible, non-cytotoxic, non antigentic, stuitable for cell attachment, proliferation and differentiation, flexible and elastic, three dimensional, osteoconductive and support the transport of nutrients and metabolic waste. Subsequently, studies reporting on the various advantages and disadvantages of using collagen based scaffolds in musculoskeletal and cartilage tissue engineering were identified. The purpose of this review is to 1) provide a list of ideal characteristics of a scaffold as identified in the literature 2) identify different types of biological protein-based collagen scaffolds used in musculoskeletal and cartilage tissue engineering 3) assess how many of the criteria each scaffold type meets 4) weigh different scaffolds against each other according to their relative properties and shortcomings. The rationale behind this approach is that the ideal scaffold material has not yet been identified. Hence, this review will define how many of the identified ideal characteristics are fulfilled by natural collagen-based scaffolds and address the shortcomings of its use as found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号