首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present evidence that plant cells, like animal cells, may be typed according to their specific cellular determinants. Stems, leaves, pistils, and anthers of sweet cherry, Prunus avium , and their derived callus cells in culture have been examined by immunological methods to determine both to what extent parental characteristics are retained by the callus cells and the relationship between callifrom different organs. For the organs, some antigenic determinants were shared while others were unique to a particular organ. Callus cells derived from different organs share some common determinants, while others are specific. Although the callus cells from a particular organ retained their antigenic individuality, they also expressed a wider range of determinants than their parental tissues. Parental antigens were still expressed in callus cells after four subcultures. In suspension culturès of leaf and pistil callus, the organ-specific antigens were present in the culture filtrate and were associated with the protein rather than polysaccharide fractions.  相似文献   

2.
Mycobacteriophages—bacteriophages infecting Mycobacterium hosts—contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.  相似文献   

3.
This work describes a new apparatus for growing fungi and other microorganisms on liquid nutrient media in a Petri dish. The apparatus is composed of a net supporting a cellophane membrane stretched between an outer and an inner ring that is placed inside a Petri dish. This modification of the standard Petri dish offers many advantages for studying growth, metabolism, differentiation, and other aspects of fungi in liquid cultures with minimal waste of expensive chemicals. Monitoring of excreted or absorbed substances by the fungi, the aseptic transfer of undisturbed fungal colonies from dish to dish, and harvesting are made easier, using this apparatus.  相似文献   

4.
5.
6.
Many animal organs, such as the lung, the kidney, the mammary gland, and the vasculature, consist of branched tubular structures that arise through a process known as “branching morphogenesis” that results from the remodeling of epithelial or endothelial sheaths into multicellular tubular networks. In recent years, the combination of molecular biology, forward and reverse genetic approaches, and their complementation by live imaging has started to unravel rules and mechanisms controlling branching processes in animals. Common patterns of branch formation spanning diverse model systems are beginning to emerge that might reflect unifying principles of tubular organ formation.  相似文献   

7.
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better understanding of these mechanisms in a human-relevant environment could aid the discovery of drugs against pathogenic liver infection.  相似文献   

8.
9.
10.
Phospholipase D (PLD) enzymes play a double vital role in cells: they maintain the integrity of cellular membranes and they participate in cell signaling including intracellular protein trafficking, cytoskeletal dynamics, cell migration, and cell proliferation. The particular involvement of PLD in cell migration is accomplished: (a) through the actions of its enzymatic product of reaction, phosphatidic acid, and its unique shape-binding role on membrane geometry; (b) through a particular guanine nucleotide exchange factor (GEF) activity (the first of its class assigned to a phospholipase) in the case of the mammalian isoform PLD2; and (c) through protein-protein interactions with a wide network of molecules: Wiskott–Aldrich syndrome protein (WASp), Grb2, ribosomal S6 kinase (S6K), and Rac2. Further, PLD interacts with a variety of kinases (PKC, FES, EGF receptor (EGFR), and JAK3) that are activated by it, or PLD becomes the target substrate. Out of these myriads of functions, PLD is becoming recognized as a major player in cell migration, cell invasion, and cancer metastasis. This is the story of the evolution of PLD from being involved in a large number of seemingly unrelated cellular functions to its most recent role in cancer signaling, a subfield that is expected to grow exponentially.  相似文献   

11.
Tubulin can polymerize in two distinct arrangements: “B-lattices,” in which the α-tubulins of one protofilament lie next to α-tubulins in the neighboring protofilaments, or the “A” configuration, where α-tubulins lie beside β-tubulins. Microtubules (MTs) in flagellar axonemes and those assembled from pure tubulin in vitro display only B-lattices, but recent work shows that A-lattices are found when tubulin co-polymerizes in vitro with an allele of end-binding protein 1 that lacks C-terminal sequences. This observation suggests that cytoplasmic MTs, which form in the presence of this “tip-associating protein,” may have A-lattices. To test this hypothesis, we have decorated interphase MTs in 3T3 cells with monomeric motor domains from the kinesin-like protein Eg5. These MTs show only B-lattices, as confirmed by visual inspection of electron cryo-tomograms and power spectra of single projection views, imaged at higher electron dose. This result is significant because 13 protofilament MTs with B-lattices must include a “seam,” one lateral domain where adjacent dimers are in the A-configuration. It follows that cytoplasmic MTs are not cylindrically symmetric; they have two distinct faces, which may influence the binding patterns of functionally significant MT-interacting proteins.  相似文献   

12.
The parameters of the cell cycle are analyzed in terms of the stochastic theory of cell proliferation for a murine mastocytoma line. The cells were grown in suspension culture under steady-state conditions in a chemostat. Initial estimates of the parameters from synchronous growth indicate that agreement of the data with the model is obtained only if the model is modified to include an initial proliferating fraction of less than 100%, and a cell loss continuing throughout the course of the experiment. The analysis verifies that the modified theory adequately describes the data, and that similar parameters are obtained from both desynchronization and percent labeled mitosis experiments. The average cycle time from 10 desynchronization experiments was 8.24 ± 0.52 h with a cellular standard deviation of 1.28 ± 0.18. The combined parameter obtained by dividing the cellular standard deviation by the cycle time is shown to be a useful measure of biological variability well defined over many different experiments. The rate constant for cell loss is about 0.009 which gives an 8% cell loss per cycle. The cell loss is sufficient to account for the apparent deficit in initially proliferating cells. The initial distribution of the synchronous cells is qualitatively examined and is found to be peaked late in G1 or early in S.  相似文献   

13.
The importance and essential functions of glial cells in the nervous system are now beginning to be understood and appreciated. Glial cell lines have been instrumental in the elucidation of many of these properties. In this Overview, the origin and properties of most of the existing cell lines for the major glial types: oligodendroglia, astroglia, microglia and Schwann cells, are documented. Particular emphasis is given to the culture conditions for each cell line and the degree to which the line can differentiate in vitro and in vivo. The major molecular markers for each glial cell lines are indicated. Finally, methods by which the glial cell lines have been developed are noted and the future directions of glial cell line research are discussed.  相似文献   

14.
15.
16.
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.  相似文献   

17.
18.
Over the past 2 decades our knowledge about actin filaments has evolved from a rigid “pearls on a string” model to that of a complex, highly dynamic protein polymer which can now be analyzed at atomic detail. To achieve this, exploring actin's oligomerization, polymerization, polymorphism, and dynamic behavior has been crucial to understanding in detail how this abundant and ubiquitous protein can fulfill its various functions within living cells. In this review, a correlative view of a number of distinct aspects of actin is presented, and the functional implications of recent structural, biochemical, and mechanical data are critically evaluated. Rational analysis of these various experimental data is achieved using an integrated structural approach which combines intermediate-resolution electron microscopy-based 3-D reconstructions of entire actin filaments with atomic resolution X-ray data of monomeric and polymeric actin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号