首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When growing under limiting phosphate (P) conditions, Arabidopsis thaliana plants show dramatic changes in root architecture, including a reduction in primary root length, increased formation of lateral roots and greater formation of root hairs. Here we report that primary root growth inhibition by low P is caused by a shift from an indeterminate to a determinate developmental program. In the primary root, the low P-induced determinate growth program initiates with a reduction of cell elongation followed by the progressive loss of meristematic cells. At later stages, cell proliferation ceases and cell differentiation takes place at the former cell elongation and meristematic regions of the primary root. In low P, not only the primary but also almost all mature lateral roots enter the determinate developmental program. Kinetic studies of expression of the cell cycle marker CycB1;1:uidA and the quiescent center (QC) identity marker QC46:GUS showed that in low P conditions, reduction in proliferation in the primary root was preceded by alterations in the QC. These results suggest that in Arabidopsis, P limitation can induce a determinate root developmental program that plays an important role in altering root system architecture and that the QC could act as a sensor of environmental signals.  相似文献   

2.
The mechanisms of the maintenance of long-term cell proliferation and its cessation in the meristem of the growing root were analyzed. Quiescent center (QC) remains in the meristem for a long time, whereas all other cells leave the meristem after several mitotic cycles. The question arises as to what extent such organization of proliferation corresponds to the concept of stem cells elaborated for animals. The definition of animal stem cells is met by the QC cells rather than by actively dividing cells that boundary it. However, QC is not a self-maintaining population of cells originated during early stages of embryogenesis; it is formed from dividing cells in the main or lateral root. After root decapitation, the QC can arise from the cells that normally would leave the meristem before long. There is a zone of the meristem whose cells are capable of remaining and forming QC after the removal of the apical part of the root. Maintenance of the size of the meristem depends on the interaction between QC, initial cells located at its surface, and the actively dividing cells. Apparently, the life span of cells in the meristem determines the time when the meristematic cell will begin the elongation. The number of cells starting the elongation depends on proliferation rate and on the changes in life span of meristematic cells which determine their initial number. The life span of the cells in the meristem for most actively dividing cells does not depend on the cell divisions, and remains unchanged in the presence of various inhibitors. As a result of inhibited proliferation in the main part of the meristem, cell divisions in the QC are activated and newly formed cells may proceed to rapid divisions. Thus, the size of the meristem is maintained by the operation of several mechanisms, and individual processes may be, on the one hand, relatively independent and, on the other hand, regulated either by feedback or directly. As a result, the root growth becomes resistant to various external events.  相似文献   

3.
Developmental changes in the root apex and accompanying changes in lateral root growth and root hydraulic conductivity were examined for Opuntia ficus-indica (L.) Miller during rapid drying, as occurs for roots near the soil surface, and more gradual drying, as occurs in deeper soil layers. During 7 d of rapid drying (in containers with a 3-cm depth of vermiculite), the rate of root growth decreased sharply and most root apices died; such a determinate pattern of root growth was not due to meristem exhaustion but rather to meristem mortality after 3 d of drying. The length of the meristem, the duration of the cell division cycle, and the length of the elongation zone were unchanged during rapid drying. During 14 d of gradual drying (in containers with a 6-cm depth of vermiculite), root mortality was relatively low; the length of the elongation zone decreased by 70%, the number of meristematic cells decreased 30%, and the duration of the cell cycle increased by 36%. Root hydraulic conductivity ( L P) decreased to one half during both drying treatments; L P was restored by 2 d of rewetting owing to the emergence of lateral roots following rapid drying and to renewed apical elongation following gradual drying. Thus, in response to drought, the apical meristems of roots of O. ficus-indica near the surface die, whereas deeper in the substrate cell division and elongation in root apices continue. Water uptake in response to rainfall in the field can be enhanced by lateral root proliferation near the soil surface and additionally by resumption of apical growth for deeper roots.  相似文献   

4.
The arrest of DNA synthesis and termination of cell division in basal meristematic cells as well as the resumption of these processes as related to the initiation of lateral root primordia (LRP) were studied in tissues of Triticum aestivumroots incubated with 3H-thymidine. All cells of the stelar parenchyma and cortex as well as most endodermal and pericycle cells left the mitotic cycle and ceased proliferative activity at the basal end of the meristem and at the beginning of the elongation zone. Some endodermal and pericycle cells started DNA synthesis in the basal part of the meristem and completed it later on during their elongation, but they did not divide. In the cells of these tissues, DNA synthesis resumed above the elongation zone, the cells being located much closer to the root tip than the first newly dividing cells. Thus, the initiation of LRP started much closer to the root tip than it was previously believed judging from the distance of the first dividing pericycle cells from the root tip. DNA synthesizing and dividing cells first appeared in the stelar parenchyma, then, in the pericycle, and later, in the endodermis and cortex. It seems likely that a release from the inhibition of DNA synthesis allows the cells that completed mitotic cycle in the basal part of meristem in the G1phase to cease the proliferative arrest above the elongation zone and to continue their cycling. The location of the first DNA synthesizing and dividing cells in the stelar parenchyma and pericycle did not strictly correspond to the LRP initiation sites and proximity to the xylem or phloem poles. This indicates that LRP initiation results from the resumption of DNA synthesis in all pericycle and stelar parenchyma cells that retained the ability to synthesize DNA and occurs only in the pericycle sector situated between the two tracheal protoxylem strands, all cells of which terminated their mitotic cycles in the G1phase.  相似文献   

5.
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.  相似文献   

6.
Primary roots of 98 species from different families of monocotyledonous and dicotyledonous plants and adventitious roots obtained from bulbs and rhizomes of 24 monocot species were studied. Root growth rate, root diameter, length of the meristem and elongation zones, number of meristematic cells in a file of cortical cells, and length of fully elongated cells were evaluated in each species after the onset of steady growth. The mitotic cycle duration and relative cell elongation rate were calculated. In all species, the meristem length was approximately equal to two root diameters. When comparing different species, the rate of root growth increased with a larger root diameter. This was due to an increase in the number of meristematic cells in a row and, to a lesser degree, to a greater length of fully elongated cells. The duration of the mitotic cycle and the relative cell elongation rate did not correlate with the root diameter. It is suggested that the meristem size depends on the level of nutrient inflow from upper tissues, and is thereby controlled during further growth.  相似文献   

7.
The dynamics of root growth, proliferation of initial cells of the root cap, rhizodermis, and central metaxylem, as well as structural changes in the cells induced by a 72-h exposure to a high (0.1 mM) concentration of NiSO4 were studied in 3-day-old wheat (Triticum aestivum L.) seedlings. In the roots of control plants, we observed a 12-h rhythm of changes in the length of the cells that completed elongating. Upon the treatment with nickel, this effect was negated, and a considerable reduction in the root length increment was observed in 12 h. In 24 h, root growth essentially ceased. Cell elongation was suppressed acropetally, and the cells, whose elongation was over, became shorter. In the meristem and apical part of the elongation zone, slow cell growth continued during the second and even third days. Autoradiography showed that the earliest effect of nickel on the processes of root morphogenesis observed in 6 h was a suppression of cell transition to DNA synthesis. The cells, where DNA synthesis has already started or which were in other stages of the cycle, continued to pass slowly through the cycle and completed it. Sister cells formed as a result of division subsequently left the cycle in the phase G1 and transited to dormancy. It was found that the main mechanism of cell proliferation cessation was the suppression of cell transition to DNA synthesis. In the cells elongating when exposed to nickel, tissue-specific changes in the nucleus structure were observed (chromatolysis in the rhizodermis and cortex, pycnosis in the endodermis, a disturbance of the nucleus structure in the central metaxylem). These disorders were only observed after cessation of elongation. Root incubation in 0.1 mM nickel solution did not affect the onset of cell differentiation in the xylem and metaphloem and shifted its beginning to the root tip. However, in 24 h the initiation and growth of root hairs were suppressed. It was concluded that tissue-specific nickel-induced changes in the nucleus structure in the elongating cells do not cause the cessation of root growth, although point to nickel toxic effect on the cells in the course of elongation.  相似文献   

8.
The effect of 10–6 and 10–4 M NiSO4 on cell growth, proliferation, and differentiation was studied over 48 h in seminal and lateral roots of five-day-old Triticum aestivum seedlings. 10–6 M NiSO4 did not significantly affect the root system, whereas 10–4 M NiSO4 inhibited its development. However, 10–6 M NiSO4 disturbed the contacts between the groups of closely related cells of the rhizodermis in the meristem. In the exodermis, an additional layer of cells was formed. At the nickel concentration of 10–4 M, cell divisions in the outer layers of the root cells and metaxylem ceased earlier than in other root tissues positioned both centripetally and acropetally. Differentiation of protophloem sieve elements was completed in the meristem but at a greater distance from the root tip. Cell elongation started at the same distance from the root tip as in control plants. The rate of elongation decreased, and acropetally it stopped. Therefore, the cells of the xylem and metaphloem started to differentiate, and primordia of lateral roots were initiated and formed closer to the root tip. At a lethal concentration (10–4 M), nickel induced necroses of elongating cells of the endodermis and pericycle. Nickel is supposed to enter the tissues of the central cylinder predominantly via the protoxylem and rapidly translocate along the xylem. As a result, the incubation of the roots at this concentration for 48 h almost did not affect the development of the phloem and probably sugar unloading, that makes possible to maintain the growth of meristematic cells and the cell division of the most important tissues for longer time.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 250–258.Original Russian Text Copyright © 2005 by N. Demchenko, Kalimova, K. Demchenko.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

9.
A sound approach to the root usage as model objects for the assessment of biological activity of chemical substances and environmental stressors is suggested on the basis of the analysis of various inhibitor and radiation action on the root. It is analyzed on the cellular level, how steady growth is maintained under various stress action. Special attention is paid to the meristematic cell transition to elongation, which is controlled by the two groups of processes: the first ones determine the rate of cell proliferation and the second ones determine the cell life span in the meristem. The rate of cell proliferation is rather sensitive to various treatments; in contrast, the processes controlling the cell life span in the meristem are rather stable. It is shown that studying the kinetics of the root growth rate gives much more information than a single measurement of root length increment. A possibility of root usage for the search of efficient cytostatics is exemplified. The role of the quiescent center in growth resumption after various stressful treatments is considered.  相似文献   

10.
In this study, we investigated responses of growing and intact tobacco (N. tabacum cv Xanthi) seedlings to a fungal elicitor, a xylanase from Trichoderma viride (TvX). In addition to the induction of defense gene expression, TvX treatment caused the retardation of growth of seedlings. In the TvX-treated seedlings, growth of primary roots was markedly reduced through repression of cell division and longitudinal cell elongation in a meristematic zone and an elongation zone, respectively. However, cell differentiation to form vascular bundles and root hairs continued. In the TvX-treated root cap, disappearance of starch granules in columella cells and aggregation of border cells were observed. Furthermore, the TvX-induced growth retardation was restored after removal of the elicitor, resulting in a plastic alteration of root architecture. Therefore, the fungal elicitor might act as an environmental cue that regulates root growth and development as well as the ordinary defense responses in plant seedlings. These findings suggest a novel aspect of plant growth regulation via a plant–microbe interaction in the rhizosphere.  相似文献   

11.
In the growing apex of Arabidopsis thaliana primary roots, cells proceed through four distinct phases of cellular activities. These zones and their boundaries can be well defined based on their characteristic cellular activities. The meristematic zone comprises, and is limited to, all cells that undergo mitotic divisions. Detailed in vivo analysis of transgenic lines reveals that, in the Columbia-0 ecotype, the meristem stretches up to 200 µm away from the junction between root and root cap (RCJ). In the transition zone, 200 to about 520 µm away from the RCJ, cells undergo physiological changes as they prepare for their fast elongation. Upon entering the transition zone, they progressively develop a central vacuole, polarize the cytoskeleton and remodel their cell walls. Cells grow slowly during this transition: it takes ten hours to triplicate cell length from 8.5 to about 35 µm in the trichoblast cell files. In the fast elongation zone, which covers the zone from 520 to about 850 µm from the RCJ, cell length quadruplicates to about 140 µm in only two hours. This is accompanied by drastic and specific cell wall alterations. Finally, root hairs fully develop in the growth terminating zone, where root cells undergo a minor elongation to reach their mature lengths.Key words: Arabidopsis, cytoskeleton, development, differentiation zone, elongation zone, growth, growth terminating zone, meristem, root apex, transition zone  相似文献   

12.
Summary The study of the cell division cycle by means of caffeine labelling inAllium roots, at 15° C, employing intact root and decapitated roots at several levels (0.5, 1.0, 1.5, 2.0, and 2.5 mm) has shown that the number of cycles developed by the cells is constant at each meristem level. This number and the durations of the cycles are not affected by the decapitation. It is suggested that the cell cycle is controlled in the meristematic cells by an intracellular programme which would be developed throughout the meristem.However, the larger the region decapitated is, the more decreases the growth rate of the roots. The removal of the root cap (about 0.5 mm) did not modify the rate of root growth, although it blocked the geotropic response. The quiescent center is proposed as a source of auxin controlling cell elongation.  相似文献   

13.
UV-B irradiation of barley (Hordeum vulgare L.) roots (1 W/m2, 15 min) or leaves (3 W/m2, 3.3 h) and also one-day-long root incubation in the Knop solution supplemented with 1–4 μM ABA, 1 mM salicylic acid, 16 μM ionomycin, or 0.1 mM colchicine induced growth retardation and subapical root swelling. All factors, except for colchicine, initiated growth of root hairs on the surface of swellings and suppressed their initiation and growth in more basal root region. During the first hour after unilateral root UV-B irradiation, their growth sharply retarded and hydraulic conductivity of membranes in the rhizodermis of growth zone rose 1.5-fold. In 2.5 h, root tips bent toward the source of irradiation. In 4.5 h, the ratio of longitudinal to transverse root extensibility in the root growth zone reduced twofold. In 8 h, root diameter in the subapical zone increased and root hairs appeared in this zone and attained 300 μm in length. In a day after irradiation, on unirradiated root side, meristematic cells continued to divide and grow, although at a much lower rate. On the irradiated root side, the cells of the rhizodermis and outer cortex ceased to divide and produced vacuoles. Vacuolation did not occur in the cells of the quiescent center and a distal part of the meristem. The lower part of the elongation zone swelled due to cortical cell expansion (except for the endodermis) in both irradiated and unirradiated root sides. It is supposed that cortical microtubule randomization plays an important role in the changed anisotropy of cell wall extensibility and cytosolic calcium is involved in this process. The role of oxidative stress and hormonal shifts in the development of subapical root swelling and root hair formation caused by UV-B radiation is discussed.  相似文献   

14.
In the present work, we investigated the alteration of oxidative and peroxidative activities of peroxidases (PODs) along the longitudinal root axis of barley seedlings during heavy metal (HM; e.g., Cd, Cu, Hg, Ni, Pb) treatment. Analysis of the individual root segments revealed that all of the analyzed HMs caused an increase of guaiacol-POD activity, however to a different extent and spatial distribution. Cd-induced ferulic acid POD activity was observed along the whole root tip (RT), while Cu and Hg caused its increase in the meristematic zone and Ni mainly at the end of the differentiation zone of RT. The activation of coniferyl alcohol POD by HMs was detected along the whole RT. HM-induced hydrogen peroxide-generating POD activity was localized mainly to the elongation zone of RT. Elevated chlorogenic acid POD activity was observed in the meristematic zone and at the end of the differentiation zone of RTs. The activation of several PODs is probably associated with enhanced H2O2 production and lignification as a defense response of roots to several HM, to prevent their uncontrolled flux. On the other hand, this defense response is accompanied by root growth inhibition, due to the enhanced rigidification of cell wall and accelerated differentiation of RTs.  相似文献   

15.
The effect of the low temperature (+4°C) on the organization of actin filaments (microfilaments) of cells from different growth zones has been studied in the roots of Arabidopsis thaliana (L.). It was found that cold treatment inhibited the growth of the primary root and changed its morphology, causing a formation of large number of deformed (ectopic) root hairs in differentiation zone. The temporal relationship between the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots after cold treatment was shown. It has been found that actin filaments of root hairs, meristematic cells, cells of elongation zone, and epidermal cells of all root zones of A. thaliana are the most sensitive to the cold.  相似文献   

16.
17.
Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5–5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5–5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5–5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.  相似文献   

18.
Hosaka H  Takagi MK 《Plant physiology》1992,99(4):1650-1656
The mechanisms of selective herbicidal action of sethoxydim were investigated by using cultured root tips of corn (Zea mays L. cv Goldencrossbantam) and pea (Pisum sativum L. cv Alaska). Meristematic cells in the cultured roots were arrested in G1 and G2 of the cell division cycle by sucrose starvation and resumed growth and cell division (proliferation) when sucrose was provided. Corn root growth after sucrose addition was inhibited by sethoxydim at concentrations of 0.01 micromolar and greater when roots were treated in the presence of sucrose but was not inhibited at 10 micromolar sethoxydim when they were treated during sucrose starvation. Greater absorption of [14C]sethoxydim into the meristematic region of corn roots was observed when cells were in proliferative condition but not when they were arrested by sucrose starvation, whereas no greater absorption of the herbicide into pea meristems was observed in either growth condition. In the cell cycle study, greater absorption of [14C]sethoxydim into the corn root meristem was observed at a certain limited time before S (DNA synthesis) stage. The physiological effects and the greater absorption of sethoxydim clearly depended on cell cycle progression of corn root meristem, whereas fatty acid synthesis, as well as its inhibition by sethoxydim, was not associated with either cell cycle progression or greater absorption of the herbicide.  相似文献   

19.
Zinc (Zn) distribution over tissues and organs of maize (Zea mays L.) seedlings and its action on root growth, cell division, and cell elongation were studied. Two-day-old seedlings were incubated in the 0.25-strength Hoagland solution containing 2 or 475 μM Zn(NO3)2. Zn toxicity was assessed after the inhibition of primary root increment during the first and second days of incubation. The content of Zn was determined by atomic absorption spectrometry in the apical (the first centimeter from the root tip) and basal (the third centimeter from the kernel) root parts. Zn distribution in various tissues was studied by histochemical methods, using a metallochromic indicator zincon and fluorescent indicator Zinpyr-1 and light and confocal scanning fluorescent light microscopy, respectively. To evaluate Zn effects on growth processes, the average length of the meristem; the length of fully elongated cells; the number of meristematic cells in the cortex row; and duration of the cell cycle were measured. When the Zn concentration in the solution was high, the Zn content per weight unit was higher in the basal root part due to its accumulation in lateral root primordial. Zn was also accumulated in both the meristem apoplast and cell protoplasts. In the basal and middle root parts, Zn was detected essentially in all tissues predominantly in the apoplast. Zn inhibited both cell division and elongation. Under Zn influence, the size of the meristem and the number of meristematic cells decreased, which was determined by an increase in the cell cycle duration. The length of the fully elongated cells was also reduced. A comparison of Zn distribution and growth-suppressing activity with other heavy metals studied earlier allows a conclusion that toxic action of heavy metals is mainly determined by physical and chemical properties of their ions and specific patterns of their transport and distribution. As a result, two basic processes determining root growth, e.g., cell division and elongation, could be affected differently.  相似文献   

20.
The effects of Pb, Sr, and Ni nitrates on the root growth, its cell division and elongation were studied. Two-day-old maize seedlings were incubated on the 35 μM Ni(NO3)2, 10 μM Pb(NO3)2, or 3 mM Sr(NO3)2 in the presence or absence of 3 mM Ca(NO3)2. Metal toxicity was evaluated after the inhibition of root growth for the first and second days of incubation in comparison with the roots kept on water or Ca(NO3)2 solution. The contents of metals were determined in the apical (the first centimeter from the tip) and basal (the third centimeter from the kernel) root parts by voltamperometry and atomic-absorption spectrophotometry. We measured the length of the meristem, the length of the fully elongated cells, counted the mitotic index (MI) in the meristem and the number of meristematic cells in the cortex row; we also calculated duration the cell cycle. In the absence of Ca(NO3)2, the metal content in the apical root region was higher than in basal one. In the presence of Ca(NO3)2, we observed reverse ratio most pronounced in the case of Pb and Sr. All metals tested markedly reduced MI in the cortex, which was determined by the increase in the cell cycle duration and accompanied by the meristem shortening. These metals affected differently cell division and elongation: Ni inhibited mainly cell division and to a lesser degree their elongation, whereas Sr and Pb affected both cell division and elongation; only Sr treatment resulted in the increased length of the fully elongated cells. In the presence of Ca, all studied growth indices changed less than in the absence of Ca, which was manifested in the less severe suppression of the root growth and was in agreement with the lower accumulation of the metals in the root tips. Possible causes for the heavy metal action on growth are discussed in connection with the specificity of their transport and accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号