首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Siah proteins are ubiquitin-protein isopeptide ligases (E3) that have been implicated in a variety of cellular actions, including promotion of apoptotic death. Here, we show that Siah1 is a binding partner for POSH (plenty of SH3s), a scaffold component of the apoptotic JNK pathway, and that Siah contributes to death of neurons and other cell types by activating the JNK pathway. Such proapoptotic activity requires the E3 ligase activity of Siah1. Moreover, apoptotic stimuli markedly elevate cellular Siah1 levels by a mechanism reliant on Siah1 protein stabilization. This stabilization requires JNK pathway activation and interaction with POSH and is enhanced by phosphorylation of SIAH1 at tyrosines 100 and 126. Depletion of intracellular Siah proteins via small interference RNA partially protects cells from death evoked by apoptotic stimuli such as trophic factor deprivation and DNA damage. These findings thus reveal a "loop" mechanism in which the JNK pathway promotes SIAH1 stabilization and in which SIAH1 in turn activates the JNK pathway and, ultimately, contributes to cell death.  相似文献   

2.
Simon MC 《Cell》2004,117(7):851-853
New evidence suggests that at least two members of the family of hypoxia-inducible factor (HIF) prolyl hydroxylases that regulate HIF stability in response to oxygen (O2) availability are also targeted for proteosome-dependent degradation by the E3 ubiquitin ligases Siah1a and Siah2. This preview examines cellular responses to O2 deprivation (hypoxia) and the complexity of the regulation of the HIF O2 sensing pathway in mammals.  相似文献   

3.
The Siah1 and Siah2 E3 ubiquitin ligases play an important role in diverse signaling pathways and have been shown to be deregulated in cancer. The human Siah1 and Siah2 isoforms share high sequence similarity but possess contrary roles in cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. The different function of Siah1 and Siah2 in cancer is likely due to the ubiquitination of distinct substrates. Hence, we decided to investigate the molecular basis of the substrate specificity, utilizing the well-characterized Siah2 substrate PHD3. Using chimeric and mutational approaches, we identified critical residues in Siah2 that promote substrate specificity. Thus, we have found that four residues in the N-terminal region of the Siah2 substrate binding domain (SBD) (Ser132, His150, Pro155, Tyr163) are critical for substrate specificity. In the C-terminal region of the SBD, a single residue, Leu250, was identified to promote the specific binding of Siah2 SBD to PHD3. Our study may help to overcome the challenges in the identification of Siah2 specific inhibitors.  相似文献   

4.
5.
6.
The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.  相似文献   

7.
Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.  相似文献   

8.
Prolyl-hydroxylation of HIF-1α is a prerequisite for pVHL binding to HIF-1α, which results in degradation of HIF-1α by the ubiquitin-proteasome pathway. Hydroxylation of HIF-1α is mediated by the family of prolyl-hydroxylase proteins (PHD). In hypoxia, HIF-1α is stabilized as a result of inhibition of HIF-1α hydroxylation, which in part is achieved by decreased activity of PHD enzymes at very low oxygen concentrations. We recently demonstrated that in hypoxia the stability of 2 of 3 PHDs (1 and 3) is regulated by the E3 ligases Siah1/2. Consequently, in hypoxia Siah determines the availability of PHD1/3, which otherwise modify HIF-1α to enable its association-dependent degradation by pVHL. These findings define a newly discovered layer in the regulation of HIF-1α in hypoxia. The roles of Siah activities in hypoxia responses are discussed.  相似文献   

9.
The 2-oxoglutarate dehydrogenase complex (OGHDC) (also known as the alpha-ketoglutarate dehydrogenase complex) is a rate-limiting enzyme in the mitochondrial Krebs cycle. Here we report that the RING finger ubiquitin-protein isopeptide ligase Siah2 binds to and targets OGDHC-E2 for ubiquitination-dependent degradation. OGDHC-E2 expression and activity are elevated in Siah2(-/-) cells compared with Siah2(+)(/)(+) cells. Deletion of the mitochondrial targeting sequence of OGDHC-E2 results in its cytoplasmic localization and rapid proteasome-dependent degradation in Siah2(+)(/)(+) but not in Siah2(-/-) cells. Significantly, because of its overexpression or disruption of the mitochondrial membrane potential, the release of OGDHC-E2 from mitochondria to the cytoplasm also results in its concomitant degradation. The role of the Siah family of ligases in the regulation of OGDHC-E2 stability is expected to take place under pathological conditions in which the levels of OGDHC-E2 are altered.  相似文献   

10.
Abiotic stress tolerance mediated by protein ubiquitination   总被引:2,自引:0,他引:2  
  相似文献   

11.
Normal p53 function in primary cells deficient for Siah genes   总被引:2,自引:0,他引:2       下载免费PDF全文
Overexpression studies have suggested that Siah1 proteins may act as effectors of p53-mediated cellular responses and as regulators of mitotic progression. We have tested these hypotheses using Siah gene knockout mice. Siah1a and Siah1b were not induced by activation of endogenous p53 in tissues, primary murine embryonic fibroblasts (MEFs) or thymocytes. Furthermore, primary MEFs lacking Siah1a, Siah1b, Siah2, or both Siah2 and Siah1a displayed normal cell cycle progression, proliferation, p53-mediated senescence, and G(1) phase cell cycle arrest. Primary thymocytes deficient for Siah1a, Siah2, or both Siah2 and Siah1a, E1A-transformed MEFs lacking Siah1a, Siah1b, or Siah2, and Siah1b-null ES cells all underwent normal p53-mediated apoptosis. Finally, inhibition of Siah1b expression in Siah2 Siah1a double-mutant cells failed to inhibit cell division, p53-mediated induction of p21 expression, or cell cycle arrest. Our loss-of-function experiments do not support a general role for Siah genes in p53-mediated responses or mitosis.  相似文献   

12.
A-kinase anchor protein 121 (AKAP121) assembles a multivalent signalling complex on the outer mitochondrial membrane that controls persistence and amplitude of cAMP and src signalling to mitochondria, and plays an essential role in oxidative metabolism and cell survival. Here, we show that AKAP121 levels are regulated post-translationally by the ubiquitin/proteasome pathway. Seven In-Absentia Homolog 2 (Siah2), an E3-ubiquitin ligase whose expression is induced in hypoxic conditions, formed a complex and degraded AKAP121. In addition, we show that overexpression of Siah2 or oxygen and glucose deprivation (OGD) promotes Siah2-mediated ubiquitination and proteolysis of AKAP121. Upregulation of Siah2, by modulation of the cellular levels of AKAP121, significantly affects mitochondrial activity assessed as mitochondrial membrane potential and oxidative capacity. Also during cerebral ischaemia, AKAP121 is degraded in a Siah2-dependent manner. These findings reveal a novel mechanism of attenuation of cAMP/PKA signaling, which occurs at the distal sites of signal generation mediated by proteolysis of an AKAP scaffold protein. By regulating the stability of AKAP121-signalling complex at mitochondria, cells efficiently and rapidly adapt oxidative metabolism to fluctuations in oxygen availability.  相似文献   

13.
14.
Cullin-based E3 ligases are a large family of ubiquitin ligases with diverse cellular functions. They are composed of one of six mammalian cullin homologues, the Ring finger containing protein Roc1/Rbx1 and cullin homologue-specific adapter and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. To characterize this family of E3 ligases in intact cells, we generated a cell line with tetracycline-inducible expression of a dominant-negative mutant of the Nedd8-conjugating enzyme Ubc12, a reported inhibitor of cullin neddylation. Using this cell line, we demonstrate that the substrate recognition subunit Skp2 and the adaptor protein Skp1 are subject to Ubc12-dependent autoubiquitination and degradation. In contrast, cullin protein stability is not regulated by neddylation in mammalian cells. We also provide evidence that Cul1 and Cul3, as well as their associated substrate recognition subunits Skp2 and Keap1, respectively, homooligomerize in intact cells, suggesting that cullin-based ligases are dimeric. Cul3, but not Cul1 homooligomerization is dependent on substrate recognition subunit dimer formation. As shown for other E3 ubiquitin ligases, dimerization may play a role in regulating the activity of cullin-based E3 ligases.  相似文献   

15.
16.
17.
BackgroundThe ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established.MethodsIn this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells.ConclusionIn silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection.Data AvailabilityThe data used to support the findings of this research are included within the article and are labeled with references.  相似文献   

18.
The RING finger ubiquitin ligase Siah2 controls the stability of various substrates involved in stress and hypoxia responses, including the PHD3, which controls the stability of HIF-1alpha. In the present study we determined the role of Siah2 phosphorylation in the regulation of its activity toward PHD3. We show that Siah2 is subject to phosphorylation by p38 MAPK, which increases Siah2-mediated degradation of PHD3. Consistent with these findings, MKK3/MKK6 double-deficient cells, which cannot activate p38 kinases, exhibit impaired Siah2-dependent degradation of PHD3. Phosphopeptide mapping identified T24 and S29 as the primary phospho-acceptor sites. Phospho-mutant forms of Siah2 (S29A or T24A/S29A) exhibit impaired degradation of PHD3, particularly after hypoxia. Conversely, a phospho-mimic form of Siah2 (T24E/S29D) exhibits stronger degradation of PHD3, compared with wild type Siah2. Whereas phospho-mutant Siah2 exhibits weaker association with PHD3, phospho-mimic Siah2 associates as well as wild type and is localized within the perinuclear region, suggesting that phosphorylation of Siah2 affects its subcellular localization and, consequently, the degree of its association with PHD3. In all, our findings reveal the phosphorylation of Siah2 by p38 and the implications of such phosphorylation for Siah2 activity toward PHD3.  相似文献   

19.
Post-translational modification of proteins with ubiquitin plays a central role in regulating numerous cellular processes. E3 ligases determine the specificity of ubiquitination by mediating the transfer of ubiquitin to substrate proteins. The family of tripartite motif (TRIM) proteins make up one of the largest subfamilies of E3 ligases. Accumulating evidence suggests that dysregulation of TRIM proteins is associated with a variety of diseases. In this review we focus on the involvement of TRIM proteins in blood cancers.  相似文献   

20.
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号