首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI.

Methodology/Principal Findings

By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors.

Conclusions/Significance

These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging.  相似文献   

2.
Real-time visualization of collagen is important in studies on tissue formation and remodeling in the research fields of developmental biology and tissue engineering. Our group has previously reported on a fluorescent probe for the specific imaging of collagen in live tissue in situ, consisting of the native collagen binding protein CNA35 labeled with fluorescent dye Oregon Green 488 (CNA35-OG488). The CNA35-OG488 probe has become widely used for collagen imaging. To allow for the use of CNA35-based probes in a broader range of applications, we here present a toolbox of six genetically-encoded collagen probes which are fusions of CNA35 to fluorescent proteins that span the visible spectrum: mTurquoise2, EGFP, mAmetrine, LSSmOrange, tdTomato and mCherry. While CNA35-OG488 requires a chemical conjugation step for labeling with the fluorescent dye, these protein-based probes can be easily produced in high yields by expression in E. coli and purified in one step using Ni2+-affinity chromatography. The probes all bind specifically to collagen, both in vitro and in porcine pericardial tissue. Some first applications of the probes are shown in multicolor imaging of engineered tissue and two-photon imaging of collagen in human skin. The fully-genetic encoding of the new probes makes them easily accessible to all scientists interested in collagen formation and remodeling.  相似文献   

3.
The influence of different near-field optical (near-field scanning optical microscopy) probes on the imaging of surface plasmon polaritons propagating on thin metal films is investigated. Metal-coated fiber probes exhibit a suppression of the measured plasmon signal close to the metal film surface and increased local scattering of the plasmon field. Purely dielectric fiber probes are shown to be largely free of these effects.  相似文献   

4.

Background

High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities.

Methodology and Principal Findings

Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates.

Conclusions

We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic.  相似文献   

5.
Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology.  相似文献   

6.
This article presents a generic method to assist product and process designers in measuring resource use and environmental discharges based on the relationships between process flow inputs and outputs and their activity levels. It combines activity-based costing from conventional accounting with life-cycle inventories. The method is demonstrated on four electronic assembly product and process designs. The demonstration exhibits the disaggregation and allocation of costs and effluents from various manufacturing operations. This activity-based environmental allocation approach may be integrated with inventory analysis-the first step in full and streamlined life-cycle assessments, design for environment evaluation methods, environmental management activities, and new production planning models that consider environmental impacts.  相似文献   

7.
Glickman MH  Raveh D 《FEBS letters》2005,579(15):3214-3223
The 26S proteasome is responsible for regulated proteolysis of most intracellular proteins yet the focus of intense regulatory action itself. Proteasome abundance is responsive to cell needs or stress conditions, and dynamically localized to concentrations of substrates. Proteasomes are continually assembled and disassembled, and their subunits subject to a variety of posttranslational modifications. Furthermore, as robust and multi-tasking as this complex is, it does not function alone. A spattering of closely associating proteins enhances complex stability, fine-tunes activity, assists in substrate-binding, recycling of ubiquitin, and more. HEAT repeat caps activate proteasomes, yet share remarkable features with nuclear importins. Fascinating cross talk even occurs with ribosomes through common maturation factors. The dynamics of proteasome configurations and how they relate to diverse activities is the topic of this review.  相似文献   

8.
Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

9.
Proteasome activators   总被引:1,自引:0,他引:1  
Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. Here we present a structural perspective on how proteasomes are activated and how substrates are delivered to the proteolytic sites.  相似文献   

10.
11.
12.
13.
Here, we present a versatile method for detecting human tumor xenografts in vivo, based on the enhanced permeability and retention (EPR) effect, using near-infrared (NIR) fluorochrome-conjugated macromolecule probes. Bovine serum albumin (BSA) and two immunoglobulins—an anti-human leukocyte antigen (HLA) monoclonal antibody and isotype control IgG2a—were labeled with XenoLight CF770 fluorochrome and used as NIR-conjugated macromolecule probes to study whole-body imaging in a variety of xenotransplantation mouse models. NIR fluorescent signals were observed in subcutaneously transplanted BxPC-3 (human pancreatic cancer) cells and HCT 116 (colorectal cancer) cells within 24 h of NIR-macromolecule probe injection, but the signal from the fluorochrome itself or from the NIR-conjugated small molecule (glycine) injection was not observed. The accuracy of tumor targeting was confirmed by the localization of the NIR-conjugated immunoglobulin within the T-HCT 116 xenograft (in which the orange-red fluorescent protein tdTomato was stably expressed by HCT 116 cells) in the subcutaneous transplantation model. However, there was no significant difference in the NIR signal intensity of the region of interest between the anti-HLA antibody group and the isotype control group in the subcutaneous transplantation model. Therefore, the antibody accumulation within the tumor in vivo is based on the EPR effect. The liver metastasis generated by an intrasplenic injection of T-HCT 116 cells was clearly visualized by the NIR-conjugated anti-HLA probe but not by the orange-red fluorescent signal derived from the tdTomato reporter. This result demonstrated the superiority of the NIR probes over the tdTomato reporter protein at enhancing tissue penetration. In another xenograft model, patient-derived xenografts (PDX) of LC11-JCK (human non-small cell lung cancer) were successfully visualized using the NIR-conjugated macromolecule probe without any genetic modification. These results suggested that NIR-conjugated macromolecule, preferably, anti-HLA antibody probe is a valuable tool for the detection of human tumors in experimental metastasis models using whole-body imaging.  相似文献   

14.
In this report, we examine the involvement of the ubiquitin-proteasome pathway during fusion and differentiation of myoblast primary cell cultures. Up-regulation of proteasome was observed at the maximum fusion rate and was preceded by an increase of unidentified ubiquitin-conjugates. Cell permeable proteasome inhibitors prevent fusion as do antisense oligodesoxyribonucleotides targetted to three proteasome subunits. Identical results were obtained using E3 ubiquitin-ligases dipeptide inhibitor. Involvement of the ubiquitin-proteasome pathway in the regulation of myogenic factors was hypothetized.  相似文献   

15.
The maintenance of cellular homeostasis and the ability of cells to respond to their environment depend on the degradation of bulk proteins and orderly degradation of key regulatory proteins and their inhibitors. The 26S proteasome plays an essential role in these degradations. It is involved in the activation and inactivation of many cellular processes such as cell cycle progression, apoptosis and regulation of gene expression. It presents unique structural and functional properties. It degrades proteins by an unusual mechanism. Several series of proteasome inhibitors have been developed, useful to elucidate the biological roles of this multicatalytic enzyme. Velcade (bortezomid) was the first proteasome inhibitor to undergo, in may 2003, clinical trials in cancer patients.  相似文献   

16.
Assembly of the eukaryotic 20S proteasome is an ordered process involving several proteins operating as proteasome assembly factors including PAC1-PAC2 but archaeal 20S proteasome subunits can spontaneously assemble into an active cylindrical architecture. Recent bioinformatic analysis identified archaeal PAC1-PAC2 homologs PbaA and PbaB. However, it remains unclear whether such assembly factor-like proteins play an indispensable role in orchestration of proteasome subunits in archaea. We revealed that PbaB forms a homotetramer and exerts a dual function as an ATP-independent proteasome activator and a molecular chaperone through its tentacle-like C-terminal segments. Our findings provide insights into molecular evolution relationships between proteasome activators and assembly factors.  相似文献   

17.
Cells depend upon the regulated destruction of their various proteins to maintain homeostasis and change their metabolic state. A key component of this process is the proteasome - a large multisubunit protease whose catalytic sites are sequestered within a central chamber. Entry of substrates into proteasomes is regulated by activators and is generally thought to proceed sequentially, starting from one end of the substrate polypeptide. This conventional view is expanded by a recent paper, which indicates that some unfolded substrates can open the entrance to the proteolytic chamber in the absence of an activator and can enter the proteasome in a hairpin conformation to allow limited proteolysis of internal segments.  相似文献   

18.
Patients with breast cancer (BC) overexpressing HER2 (HER2+) are selected for Trastuzumab treatment, which blocks HER2 and improves cancer prognosis. However, HER2+ diagnosis, by the gold standard, immunohistochemistry, could lead to errors, associated to: a) variability in sample manipulation (thin 2D sections), b) use of subjective algorithms, and c) heterogeneity of HER2 expression within the tissue. Therefore, we explored HER2 3D detection by multiplexed imaging of Affibody-Quantum Dots conjugates (Aff-QD), ratiometric analysis (RMAFI) and thresholding, using BC multicellular tumor spheroids (BC-MTS) (~120 μm of diameter) as 3D model of BC. HER2+, HER2– and hybrid HER2+/? BC-MTS (mimicking heterogeneous tissue) were incubated simultaneously with two Aff-QD probes (anti-HER2 and negative control (NC), respectively, (1:1)). Confocal XY sections were recorded along the Z distance, and processed by automatized RMAFI (anti-HER2 Aff-QD/ NC). Quantifying the NC fluorescence allowed to predict the fraction of non-specific accumulation of the anti-HER2 probe within the thick sample, and resolve the specific HER2 level. HER2 was detected up to 30 μm within intact BC-MTS, however, permeabilization improved detection up to 70 μm. Specific HER2 signal was objectively quantified, and HER2 3D-density of 9.2, 48.3 and 30.8% were obtained in HER2?, HER2+ and hybrid HER2+/? permeabilized BC-MTS, respectively. Therefore, by combining the multiplexing capacity of Aff-QD probes and RMAFI, we overcame the challenge of non-specific probe accumulation in 3D samples with minimal processing, yielding a fast, specific spatial HER2 detection and objective quantification.  相似文献   

19.
The brain is thought to represent specific memories through the activity of sparse and distributed neural ensembles. In this review, we examine the use of immediate early genes (IEGs), genes that are induced by neural activity, to specifically identify and genetically modify neurons activated naturally by environmental experience. Recent studies using this approach have identified cellular and molecular changes specific to neurons activated during learning relative to their inactive neighbors. By using opto- and chemogenetic regulators of neural activity, the neurons naturally recruited during learning can be artificially reactivated to directly test their role in coding external information. In contextual fear conditioning, artificial reactivation of learning-induced neural ensembles in the hippocampus or neocortex can substitute for the context itself. That is, artificial stimulation of these neurons can apparently cause the animals to “think” they are in the context. This represents a powerful approach to testing the principles by which the brain codes for the external world and how these circuits are modified with learning.A central feature of nervous systems is that, to function properly, specific neurons must become active in response to specific stimuli. The nature of this selective activation and its modification with experience is the focus of much neuroscience research, ranging from studies of sensory processing in experimental animals to disorders of thought such as schizophrenia in humans. The central dogma of neuroscience is that perceptions, memories, thoughts, and higher mental functions arise from the pattern and timing of the activity in neural ensembles in specific parts of the brain at specific points in time. Until quite recently, the investigation of these “circuit”-based questions has primarily been limited to observational techniques, such as single unit recording, functional magnetic resonance imagery (fMRI), and calcium imaging, to document the patterns of neural activity evoked by sensory experience or even complex psychological contingencies in human fMRI studies. These techniques have been enormously successful and created a framework for understanding information processing in the brain. For example, recordings in the visual system have indicated that, in the primary visual cortex, neurons are tuned to the orientation of linear stimuli (Hubel and Wiesel 1962). In contrast, neurons in higher brain areas can respond to discrete items. The most striking example of this specificity comes from in vivo recording in the human medial temporal lobe in which single units have been identified that respond to photos of the actress Halle Berry as well as her written name (Quiroga et al. 2005). This highly selective tuning of neural activity is suggestive of function, but how can this be directly tested? What would be the effect of stimulating just this rare population of neurons, a memory of the actress, a sensory illusion of her image? How does this type of specific firing arise? Do these neurons differ from their nonresponsive neighbors in terms of biochemistry, cell biology, or connectivity? Do they undergo molecular alterations when new information is learned about this individual and are these changes required for the learning? These types of questions have recently become accessible to study in mice through the use of activity-based genetic manipulation, in which neurons that are activated by a specific sensory stimulus can be altered to express any gene of experimental interest. These studies and approaches will be the focus of this work.  相似文献   

20.
余正贤  俞海平  胡蝶  朱艳  王如建 《生物磁学》2013,(34):6797-6800
分子影像学是近年来分子生物学和影像学相结合而形成的新型交叉学科,磁共振分子成像技术是分子影像学的重要手段之一,为临床医学诊断提供重要依据。但是由于不同组织之间的弛豫时间相互重叠等问题,导致较小的病变难以显示,磁共振造影剂能提高对软组织的分辨率,其中超顺磁性氧化铁纳米探针作为近年来发展起来的一种新型磁共振分子造影剂。由于具有敏感性、安全性、大的比表面积、高稳定性、靶向性等优点,近年来已成为国内外研究的热点之一。本文就超顺磁性氧化铁纳米探针的增强原理、制备工艺及靶向作用做一综述,以期为该技术的应用与研究提供借鉴和启示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号