首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Androgens play important roles in the growth of normal prostate and prostate cancer via binding to the androgen receptor (AR). In addition to androgens, AR activity can also be modulated by selective growth factors and/or kinases. Here we report a new kinase signaling pathway by showing that AR transactivation was repressed by wild type glycogen synthase kinase 3beta (GSK3 beta) or constitutively active S9A-GSK3 beta in a dose-dependent manner. In contrast, the catalytically inactive kinase mutant GSK3 beta showed little effect on the AR transactivation. The suppression of AR transactivation by GSK3 beta was abolished by the GSK3 beta inhibitor lithium chloride. The in vitro kinase assay showed that GSK3 beta prefers to phosphorylate the amino terminus of AR that may lead to the suppression of activation function 1 activity located in the NH(2)-terminal region of AR. GSK3 beta interrupted the interaction between the NH(2) and COOH termini of AR, and overexpression of the constitutively active form of GSK3 beta, S9A-GSK3 beta, reduced the androgen-induced prostate cancer cell growth in stably transfected CWR22R cells. Together, our data demonstrated that GSK3 beta may function as a repressor to suppress AR-mediated transactivation and cell growth, which may provide a new strategy to modulate the AR-mediated prostate cancer growth.  相似文献   

3.
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

4.
5.
6.
Currently, few therapies are effective against castration-resistant prostate cancer. Increased activation of the androgen/androgen receptor (AR) signaling pathway is thought to promote castration-resistant prostate cancer. Herein, we report that peroxiredoxin (Prx) gene expression in castration-resistant prostate cancer and hydrogen peroxide-resistant cells was upregulated. Prx2 was overexpressed in castration-resistant prostate cancer at the mRNA and protein levels and was localized to the nucleus and cytoplasm. Overexpression of Prx2 increased AR transactivation, whereas Prx2 overexpression in the nucleus suppressed AR transactivation. These effects of Prx2 on AR activity were abolished by the introduction of function-disrupting mutations into Cys51 and Cys172. Silencing Prx2 reduced the expression of androgen-regulated genes and suppressed the growth of AR-expressing prostate cancer cells by inducing cell-cycle arrest at the G1 phase. Furthermore, Prx2 knockdown also suppressed cell growth in castration-resistant prostate cancer cells. These findings indicate that Prx2 is involved in the proliferation of AR-expressing prostate cancer cells by modulating AR activity. Designing therapeutics targeting Prx2 may offer a novel strategy for developing treatments for prostate cancer, including castration-resistant prostate cancer, which is dependent on AR signaling.  相似文献   

7.
Defects in the PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor gene have been found in many human cancers including breast and prostate. Here we show that PTEN suppresses androgen receptor (AR) activity via a phosphatidylinositol-3-OH kinase/Akt-independent pathway in the early passage numbers prostate cancer LNCaP cells. We provide the direct links between PTEN and androgen/AR signaling by demonstrating that AR directly interacts with PTEN. The interaction between PTEN and AR inhibits the AR nuclear translocation and promotes the AR protein degradation that result in the suppression of AR transactivation and induction of apoptosis. The minimum interaction peptide within AR (amino acids 483-651) disrupts the interaction of PTEN with AR and reduces the PTEN effect on AR transactivation and apoptosis. Genetic approaches using PTEN-null mouse embryonic fibroblasts (MEFs) further demonstrate that both AR expression and AR activity were much higher in PTEN-null MEFs than wild-type MEFs, and reintroducing PTEN into PTEN-null MEFs dramatically reduced AR protein levels and AR activity. Interestingly, we also found that PTEN could suppress AR activity via the phosphatidylinositol-3-OH kinase/Akt-dependent pathway in the higher passage number LNCaP cells, because restoration of Akt activity blocks the effect of PTEN on AR activity. Together, these contrasting PTEN effects on AR activity in the same prostate cancer cell line with different passage numbers suggest that PTEN, via distinct mechanisms, differentially regulates AR in various stages of prostate cancers.  相似文献   

8.
9.
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.  相似文献   

10.
The ligand-bound androgen receptor (AR) regulates target genes via a mechanism involving coregulators such as androgen receptor-associated 54 (ARA54). We investigated whether the interruption of the AR coregulator function could lead to down-regulation of AR activity. Using in vitro mutagenesis and a yeast two-hybrid screening assay, we have isolated a mutant ARA54 (mt-ARA54) carrying a point mutation at amino acid 472 changing a glutamic acid to lysine, which acts as a dominant-negative inhibitor of AR transactivation. In transient transfection assays of prostate cancer cell lines, the mt-ARA54 suppressed endogenous mutated AR-mediated and exogenous wild-type AR-mediated transactivation in LNCaP and PC-3 cells, respectively. In DU145 cells, the mt-ARA54 suppressed exogenous ARA54 but not other coregulators, such as ARA55-enhanced or SRC-1-enhanced AR transactivation. In the LNCaP cells stably transfected with the plasmids encoding the mt-ARA54 under the doxycycline inducible system, the overexpression of the mt-ARA54 inhibited cell growth and endogenous expression of prostate-specific antigen. Mammalian two-hybrid assays further demonstrated that the mt-ARA54 can disrupt the interaction between wild-type ARA54 molecules, suggesting that ARA54 dimerization or oligomerization may play an essential role in the enhancement of AR transactivation. Together, our results demonstrate that a dominant-negative AR coregulator can suppress AR transactivation and cell proliferation in prostate cancer cells. Further studies may provide a new therapeutic approach for blocking AR-mediated prostate cancer growth.  相似文献   

11.
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.  相似文献   

12.
The androgen receptor (AR) can be activated in the absence of androgens by interleukin-6 (IL-6) in human prostate cancer cells. The events involved in ligand-independent activation of the AR are unknown, but have been suggested to involve phosphorylation of the AR itself or a receptor-associated protein. Steroid receptor coactivator-1 (SRC-1) has been shown to interact with the human AR and to modulate ligand-dependent AR transactivation and is regulated by phosphorylation by MAPK. To date, no one has examined the role of SRC-1 in ligand-independent activation of the AR by IL-6 or other signaling pathways known to activate the full-length receptor. This study addressed this and has revealed the following. 1) SRC-1 similarly enhanced ligand-independent activation of the AR by IL-6 to the same magnitude as that obtained via ligand-dependent activation. 2) Androgen and IL-6 stimulated the MAPK pathway. 3) MAPK was required for both ligand-dependent and ligand-independent activation of the AR. 4) Phosphorylation of SRC-1 by MAPK was required for optimal ligand-independent activation of the AR by IL-6. 5) Protein-protein interaction between endogenous AR and SRC-1 was dependent upon treatment of LNCaP cells with IL-6 or R1881. 6) Protein-protein interaction between the AR N-terminal domain and SRC-1 was independent of MAPK. 7) Ligand-independent activation of the AR did not occur by a mechanism of overexpression of either solely wild-type SRC-1 or mutant SRC-1 that mimics its phosphorylated form.  相似文献   

13.
Interleukin-6 regulation of prostate cancer cell growth   总被引:11,自引:0,他引:11  
  相似文献   

14.
5α-Androstane-3α,17β-diol (3α-diol) is reduced from the potent androgen, 5α-dihydrotestosterone (5α-DHT), by reductive 3α-hydroxysteroid dehydrogenases (3α-HSDs) in the prostate. 3α-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5α-DHT. However, 3α-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3α-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3α-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3α-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3α-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3α-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3α-HSD expression are significantly elevated in localized and advanced prostate cancer, 3α-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

15.
16.
The androgen-androgen receptor (AR) system plays vital roles in a wide array of biological processes, including prostate cancer development and progression. Several growth factors, such as insulin-like growth factor 1 (IGF1), can induce AR activation, whereas insulin resistance and hyperinsulinemia are correlated with an elevated incidence of prostate cancer. Here we report that Foxo1, a downstream molecule that becomes phosphorylated and inactivated by phosphatidylinositol 3-kinase/Akt kinase in response to IGF1 or insulin, suppresses ligand-mediated AR transactivation. Foxo1 reduces androgen-induced AR target gene expressions and suppresses the in vitro growth of prostate cancer cells. These inhibitory effects of Foxo1 are attenuated by IGF1 but are enhanced when it is rendered Akt-nonphosphorylatable. Foxo1 interacts directly with the C terminus of AR in a ligand-dependent manner and disrupts ligand-induced AR subnuclear compartmentalization. Foxo1 is recruited by liganded AR to the chromatin of AR target gene promoters, where it interferes with AR-DNA interactions. IGF1 or insulin abolish the Foxo1 occupancy of these promoters. Of interest, a positive feedback circuit working locally in an autocrine/intracrine manner may exist, because liganded AR up-regulates IGF1 receptor expression in prostate cancer cells, presumably resulting in higher IGF1 signaling tension and further enhancing the functions of the receptor itself. Thus, Foxo1 is a novel corepressor for AR, and IGF1/insulin signaling may confer stimulatory effects on AR by attenuating Foxo1 inhibition. These results highlight the potential involvement of metabolic syndrome and hyperinsulinemia in prostate diseases and further suggest that intervention of IGF1/insulin-phosphatidylinositol 3-kinase-Akt signaling may be of clinical value for prostate diseases.  相似文献   

17.
前列腺癌的发生、进展依赖于雄激素,因此去势手术成为治疗晚期前列腺癌的标准疗法。但是去势后大多前列腺癌最终将转化为雄激素非依赖性前列腺癌,甚至进展为激素难治性前列腺癌,使得肿瘤的进展不受低水平雄激素的影响。即使如此,大多数激素非依赖性前列腺癌,依然阳性表达雄激素受体。因而雄激素受体在前列腺癌发生发展中起着重要作用。而PI3K/Akt信号通路能够通过维持细胞生存、抑制细胞凋亡、促进细胞代谢及血管生成等促进前列腺癌进展。本综述旨在总结前人研究,阐述雄激素受体和PI3K/Akt信号通路之间相互作用关系。研究表明Akt信号通路能够正性或者负性调控AR蛋白表达、蛋白的稳定性及其转录活性,从而维持细胞的生存、代谢。而AR即可以通过基因转录途径抑制Akt活化又能通过非转录基因途径激活Akt及其下游蛋白。因此,AR和Akt信号通路相互协同促进前列腺癌的发生及其向雄激素非依赖性前列腺癌进展。  相似文献   

18.
Early reports showed that androgen receptor (AR) NH2- and COOH-terminal (N-C) interaction was important for full AR function. However, the influence of these interactions on the AR in vivo effects remains unclear. Here we tested some AR-associated peptides and coregulators to determine their influences on AR N-C interaction, AR transactivation, and AR coregulator function. The results showed that AR coactivators such as ARA70N, gelsolin, ARA54, and SRC-1 can enhance AR transactivation but showed differential influences on the N-C interaction. In contrast, AR corepressors ARA67 and Rad9 can suppress AR transactivation, with ARA67 enhancing and Rad9 suppressing AR N-C interaction. Furthermore, liganded AR C terminus-associated peptides can block AR N-C interaction, but only selective peptides can block AR transactivation and coregulator function. We found all the tested peptides can suppress prostate cancer LNCaP cell growth at different levels in the presence of 5alpha-dihydrotestosterone, but only the tested FXXLF-containing peptides, not FXXMF-containing peptides, can suppress prostate cancer CWR22R cell growth. Together, these results suggest that the effects of AR N-C interactions may not always correlate with similar effects on AR-mediated transactivation and/or AR-mediated cell growth. Therefore, drugs designed by targeting AR N-C interaction as a therapeutic intervention for prostate cancer treatment may face unpredictable in vivo effects.  相似文献   

19.
The purpose of this research was to investigate the role of Vav3 oncogene in human prostate cancer. We found that expression of Vav3 was significantly elevated in androgen-independent LNCaP-AI cells in comparison with that in their androgen-dependent counterparts, LNCaP cells. Vav3 expression was also detected in other human prostate cancer cell lines (PC-3, DU145, and 22Rv1) and, by immunohistochemistry analysis, was detected in 32% (26 of 82) of surgical specimens of human prostate cancer. Knockdown expression of Vav3 by small interfering RNA inhibited growth of both androgen-dependent LNCaP and androgen-independent LNCaP-AI cells. In contrast, overexpression of Vav3 promoted androgen-independent growth of LNCaP cells induced by epidermal growth factor. Overexpression of Vav3 enhanced androgen receptor (AR) activity regardless of the presence or absence of androgen and stimulated the promoters of AR target genes. These effects of Vav3 could be attenuated by either phosphatidylinositol 3-kinase (PI3K) inhibitors or dominant-negative Akt and were enhanced by cotransfection of PI3K. Moreover, phosphorylation of Akt was elevated in LNCaP cells overexpressing Vav3, which could be blocked by PI3K inhibitors. Finally, we ascertained that the DH domain of Vav3 was responsible for activation of AR. Taken together, our data show that overexpression of Vav3, through the PI3K-Akt pathway, inappropriately activates AR signaling axis and stimulates cell growth in prostate cancer cells. These findings suggest that Vav3 overexpression may be involved in prostate cancer development and progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号