首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cytochalasin A and B, colchicine and vinblastine on tumor cell killing by macrophages activated in vitro with lymphocyte mediators was examined. Both cytochalasins reversibly inhibited the killing of tumor cells by activated macrophages. Kinetic studies with cytochalasin B suggested that this drug exerts its effect on an early step of the cytotoxic process. Additional studies revealed that the drug inhibited the binding of tumor cells by activated macrophages.Colchicine inhibited both the binding and the killing of tumor cells by activated macrophages, whereas its structural analogue, lumicolchicine, had no effect on either macrophage function.Vinblastine also inhibited the binding and killing of tumor cells. However, this drug no longer inhibited tumor cell binding at low concentrations (<10?6M) that still inhibited tumor cell killing. Further, vinblastine inhibited tumor cell killing when added late to an ongoing cytolytic reaction.These results suggest that the cytochalasins, colchicine and vinblastine inhibit macrophage mediated cytotoxicity by preventing intimate contact between the effector macrophages and their targets. In addition, vinblastine also appears to inhibit a later step of the cytolytic process, possibly the secretion of a cytotoxic macrophage product.  相似文献   

2.
Systemic administration of antibody against the C3H lymphosarcoma 6C3HED caused complete suppression of the growth of 10(5) tumor cells. When the size of the tumor inoculum was increased to 10(6) tumor cells, excess antibody was unable to cause complete suppression unless exogenous macrophages were added to the tumor inocula. The decreased effectiveness of antibody was shown to be caused by a local deficiency in the supply or activation of macrophages within the large tumor grafts and not by a systemic deficiency.  相似文献   

3.
To analyze the antibody-dependent cell-mediated cytotoxicity (ADCC) reaction between tumor cells and activated murine macrophages in detail, it must be first determined if physical binding occurred between the two cell types. Over 15–20 min in vitro, antibody-coated HSB neoplastic targets became so firmly attached to the activated macrophages that they resisted removal with 4 vigorous washes. When a quantitative assay of binding was employed, attachment of tumor cells to activated macrophages was found to depend on the concentration of antibody and on the density of the macrophages. These two variables also determined the subsequent extent of cytolysis. Binding of antibody-coated targets by macrophages elicited with thioglycollate broth or activated by bacillus Calmette-Guerin (BCG) was comparable. Lysis by the activated macrophages, however, was far greater. Binding occurred at 4, 22, or 37 °C, while the subsequent lytic reaction occurred only at 37 °C. Thioglycollate broth effectively inhibited lysis but had no effect on binding. A porous filter placed between activated macrophages and targets resulted in abrogation of binding and lysis, even when antibody-coated targets were placed beneath the filters. When labeled, uncoated targets were added to cultures of macrophages in the presence of unlabeled antibody-coated targets, no lysis of the bystander (i.e., uncoated) targets was seen. The data suggest that ADCC is a multistep reaction, that vigorous physical binding of antibody-coated targets by activated macrophages is an initial and necessary step in ADCC, that such binding is not sufficient for ADCC, that such binding controls the selectivity of lysis in ADCC, and that the second step in ADCC results in target lysis.  相似文献   

4.
In a recent report we showed that IL-6 is an important mediator of experimental cancer cachexia in the colon-26 (C-26) tumor system. In culture, on a per cell basis, C-26.IVX cell line (which develops tumors and induces severe cachexia of syngeneic hosts) produces up to 60-fold less IL-6 than single cell suspensions prepared from freshly excised tumors. In this study, the mechanism behind this observation was investigated. Analysis of the cellular composition of progressing C-26 tumors indicated they contained up to 6% of macrophages. T cells, B cells, and granulocytes were not detected in the tumors. Because C-26.IVX line grown in vitro contained no macrophages, the possibility that macrophage products may augment IL-6 synthesis by the tumor cells was tested. Indeed, IL-1 beta in a dose-dependent manner and at picogram amounts could potentiate IL-6 production by the C-26 cell line. The presence of high affinity receptors for IL-1 on the C-26.IVX cell line was established. These cells expressed approximately 1500 IL-1 sites per cell with a dissociation constant of approximately 20 pM. Next, we attempted to mimic the situation in vivo by coculture of C-26.IVX cells with syngeneic peritoneal macrophages and found that this condition gives rise to an augmented IL-6 production similar to that observed with in vivo derived tumor cells or rIL-1 beta-treated C-26.IVX cells. Furthermore, anti-IL-1 type I receptor antibody completely blocked C-26.IVX IL-6 production induced by either rIL-1 beta or by peritoneal macrophages. Taken together, these data suggest a pathway of IL-6 production by C-26 tumors that involves a cellular interaction between IL-1R-expressing tumor cells and host-derived macrophages. The results also suggest that this interaction significantly contributes to cachectic events endured by the tumor-bearing host.  相似文献   

5.
The suppressor cells induced by Toxoplasma infection were shown to be macrophages, since they adhered to plastic, and their suppressive activity in anti-sheep erythrocytes (SRBC) antibody responses was abrogated by treatment with silica or carrageenan, which are selectively cytotoxic for macrophages. The suppressor macrophages strongly inhibited the uptake of tritiated thymidine ( [3H]TdR) by normal mouse spleen cells in the responses to SRBC and Toxoplasma antigens. Supernatant fluids from the suppressor macrophages could not passively transfer the suppressive effect on anti-SRBC antibody responses. Furthermore, when the suppressor macrophages were isolated by a cell-impermeable membrane from normal mouse spleen cells, the antibody responses of normal spleen cells were not suppressed. These results indicate that suppression of antibody responses in Toxoplasma-infected mice is caused by an inhibitory effect of the suppressor macrophages upon proliferation of lymphocytes via direct contact with responder target cells. The suppressive effect of the macrophages was not counteracted by indomethacin, a potent inhibitor of prostaglandin synthesis, or catalase, a catabolic enzyme for hydrogen peroxide (H2O2).  相似文献   

6.
A monoclonal antibody specific for Lewis lung carcinoma (3LL) cells (Mab 5B5) was found to recognize antigens expressed on murine macrophages and on a macrophage hybridoma line upon cell adhesion on plastic surfaces. These antigens were also present on the surface of murine macrophage tumor M5076 cells which develop solid tumors and metastases. The M5076 tumor cells freshly isolated from the primary tumor and from hepatic metastases strongly bound Mab 5B5 but lost this capacity after adhesion. Freshly isolated thioglycolate-elicited peritoneal mouse macrophages were not labeled by Mab 5B5; however, after 1 h of adhesion, 50% of the adherent macrophages were directly incubated with Mab 5B5 prior to harvesting by scraping. Permeabilization of peritoneal macrophages by saponin showed that the antigens recognized by Mab 5B5 were present inside the cells before adhesion. Similar results were obtained with the 2C11-12 macrophage hybridoma cells. P388D1 cells (a weakly adherent macrophage tumor cell line), HL60 cells (a human promyelocytic cell line), and human monocytes were poorly labeled without permeabilization but were strongly labeled by Mab 5B5 upon permeabilization. The specificity of the monoclonal antibody in relation to the adherence capacity of these cells is discussed.  相似文献   

7.
Tumor cells in a cytostatic state caused by macrophages and antibody were isolated. Such suppressed cells excluded vital dye, incorporated uridine and leucine, and metabolized glucose. They did not, however incorporate thymidine, nor did they resume cell division in culture. During prolonged culture, these cells eventually died. In this system, cytostasis was an all-or-nothing phenomenon at the level of the individual cell. Once in the cytostatic state tumor cells did not resume proliferation.  相似文献   

8.
Distribution of hyaluronectin, a 68-kDa cell surface glycoprotein, has been demonstrated in normal peritoneal, alveolar macrophages as well as in macrophages of the AK-5 tumor cell line. AK-5, a transplantable histiocytic tumor cell line, is a mixture of four different populations and can be grown in both ascites and solid tumors. We are able to demonstrate a differential expression of hyaluronectin on the cell surface of these subpopulations of AK-5 when studied by immunocytochemical staining followed by cytofluorometric analysis. Cell fractions responsible for developing both ascites and solid tumors contain higher amounts of hyaluronectin than fractions which are capable of producing only ascites, suggesting its involvement in solid tumor formation. Furthermore, we established a secretory nature of hyaluronectin as it can be detected in the serum-free medium of AK-5 cells. Since it is localized on the cell surface and secreted into the medium, the cell adhesiveness of hyaluronectin has been examined. Hyaluronectin coating on the plates allowed more cells to attach, which could be specifically blocked by the antibody raised against hyaluronectin, indicating its possible role in cell attachment. The adhesive property of hyaluronectin and its role in tumor formation was further confirmed. The pretreatment of AK-5 cells with hyaluronectin antibody abolished their capacity to grow as solid tumors; however, the cells retained their capacity to grow as ascites tumor. We discuss our observations of hyaluronectin as a cell attachment protein and its specific role on tumor formation.  相似文献   

9.
Dogs that are persistently infected or that become moribund after exposure to canine distemper virus (CDV) have antibody that neutralized CDV when tested in dog lung macrophage cultures but failed to neutralize CDV when tested in epithelial, fibroblastic, or lymphatic cells. The antibody attached to protein A and was found in the immunoglobulin G fraction. The antibody bound complement and lysed CDV-infected target cells. The neutralizing activity in macrophages could be abolished (i) by pepsin digestion and removal of Fc portions from the antibody, (ii) by blocking the Fc receptors of macrophages with heat-treated normal dog serum, and (iii) by binding of protein A to Fc portions of the antibody. It was concluded that attachment of the CDV-antibody complex to Fc receptors of macrophages was essential for virus neutralization. If this attachment was hindered, the CDV-antibody complex became infectious for macrophages. In contrast, serum from recovering dogs neutralized CDV when tested in epithelial, fibroblastic, or lymphatic cells as well as in macrophages.  相似文献   

10.
In the present study we investigated some of the cellular mechanisms for the generation of macrophage-activating factor(s) (MAF) in immune responses to tumor antigens. C3H/HeN mice were immunized to syngeneic MH134 hepatoma or MCH-1-A1 fibrosarcoma by intradermal inoculation of viable tumor cells, followed by the surgical resection of the tumor. Spleen and lymph node cells from these tumor-immune mice were stimulated in vitro with the corresponding tumor cells, and supernatant from such a culture was tested for an ability to activate macrophages to exert their cytostatic and cytolytic activities as detected on tumor cells unrelated to immunizing tumors. Peritoneal adherent cells as a macrophage source, which were preincubated with supernatant from co-culture of tumor-unimmunized normal spleen and lymph node cells plus tumor cells, failed to exhibit any significant antitumor effect on unrelated X5563 tumor cells, whereas the addition of supernatant from cultures containing immune lymphocytes to adherent cells resulted in appreciably potent cytostatic and cytolytic effects on X5563 tumor cells, indicating the generation of MAF in culture supernatant. The activation of tumor-immune spleen and lymph node cells for MAF generation was tumor-specific, because anti-MH134- and anti-MCH-1-A1-immune lymphocytes produced MAF by the stimulation with the respective but not with the other alternative tumor cells. Such MAF production was abolished by treatment of tumor-immune spleen and lymph node cells with anti-Thy-1.2 or anti-Lyt-1.1 but not with anti-Lyt-2.1 antibody plus complement before culturing. These results indicate that the tumor-specific Lyt-1+2- T cell subset has a crucial role in generating MAF by which an adherent cell population as a source of macrophages acquires the potential for inducing a cytolytic as well as a cytostatic effect on tumor cells.  相似文献   

11.
Plasma membranes were isolated from thioglycolate-induced peritoneal mouse macrophages and tested directly in a 51Cr-release assay against WEHI 164 tumor cells. These membranes showed anti-TNF antibody inhibitable killing of the TNF-sensitive tumor cell line, indicating that membrane-associated TNF is present on mouse macrophages. In order to elucidate whether membrane TNF is an integral protein or a molecule attached to a receptor, cells and plasma membranes were treated with low pH buffer. A partial reduction in TNF activity was observed which could be restored by incubation with exogenous TNF. In a Western blot analysis the integral membrane TNF could be identified as the 26-kDa molecule on activated mouse macrophages. These results indicate that both forms of membrane-associated TNF exist on macrophages and are responsible for cell-mediated cytotoxicity against TNF-alpha-sensitive targets.  相似文献   

12.
Summary The present study was undertaken to determine the factors that influence antibody-mediated cytotoxicity during immunotherapy of virally transformed tumor cells. As model a Rauscher-virus-induced myeloid leukemic cell line of BALB/c origin (RMB-1) was used, which forms disseminated tumors, when inoculated intravenously in BALB/c mice. As previously reported, prolonged survival was obtained when tumor-bearing mice were treated in vivo with a single high dose of a tumor-specific IgG2a monoclonal antibody. This study shows that antibody-dependent cellular cytotoxicity is an important mechanism involved in tumor cell destruction. Since in vitro studies showed that peritoneal macrophages were capable of killing RMB-1 cells in the presence of tumor-specific monoclonal antibody and since in the tumors of mice treated with monoclonal antibody a high influx of macrophages was observed histologically, it is likely that macrophages play an important effector role in elimination of tumor cells. Successful therapy in C5-complement-deficient tumor-bearing mice suggests that complement-dependent cytotoxicity does not play a major role. In nude (T-cell-deficient) mice the therapeutic effect of tumor-specific IgG2a antibody was significantly less than in immunocompetent mice. Although infiltration analysis of tumors of treated and untreated mice showed equally low numbers of helper-T and suppressor/cytotoxic T-cells, the mortality studies of T-cell-deficient and immunocompetent mice indicate that T-cells play a substantial, auxillary role during antibody-mediated, tumor destruction in our model.  相似文献   

13.
Three rat monoclonal antibodies against mouse peritoneal macrophages in different stages of activation were produced and characterized. One of these (AcM.1) bound to activated macrophages induced by pyran and Corynebacterium parvum, but not to resident and thioglycollate medium- (TGC) or proteose peptone- (PP) elicited macrophages. On the contrary, the antigen identified by MM9 monoclonal antibody was expressed only on resident and TGC- or PP-elicited macrophages. WE15 monoclonal antibody, on the other hand, reacted with all of the macrophages described above. In the assay for function, AcM.1 and WE15 monoclonal antibodies in the presence of complement (C) abolished the capacity of activated macrophages induced by pyran or C. parvum but not the capacity of killer T cells and natural killer (NK) cells to kill tumor target cells. On the other hand, MM9 and anti-Thy-1.2 monoclonal antibodies in the presence of C, as expected, did not affect the cytotoxicity of activated macrophages. However, none of the four monoclonal antibodies in the absence of C had any blocking effect on macrophage-mediated cytotoxicity. AcM.1 antibody reacted with two polypeptides with m.w. of 70,000 and 45,000 on pyran-activated macrophages; however, the antigens recognized by WE15 and MM9 have not been determined yet. These results indicate that the three rat monoclonal antibodies define different antigens present on macrophages at different stages of activation for tumor cytotoxicity, and that these antibodies should prove to be useful probes for analyzing the mechanism of activation of macrophages for tumor cytotoxicity.  相似文献   

14.
We investigated the in vitro activation of rat liver macrophages to a tumor-cytotoxic state with muramyl dipeptide (MDP), rough LPS (Re-LPS) and lipid A in both a free and liposome-encapsulated form. The tumor cytotoxic state of the liver macrophages was determined with a [methyl-3H]thymidine release assay using C26 colon adenocarcinoma cells as target cells. As was shown previously, the encapsulation of MDP within multi-lamellar phospholipid vesicles greatly enhanced the activating potency of the drug; by contrast, encapsulation of Re-LPS or lipid A significantly reduced the activation of macrophages as compared to the free form of these agents. At a dose of 1 ng of free Re-LPS per ml a significant induction of tumor cell lysis was observed whereas a maximal level was obtained at a concentration of approximately 10 ng/ml. By encapsulation of Re-LPS in liposomes the activating potency diminished 20- to 100-fold. The minimal concentration required to induce detectable macrophage activation with free lipid A was 10 ng/ml, while liposome-encapsulated lipid A did not induce any detectable tumor cell lysis up to a concentration of 200 ng/ml. After a 1-h pre-incubation with a lysosomal fraction from rat liver at pH 4.8, the macrophage-activating potency of Re-LPS and lipid A was diminished by up to 95% whereas MDP remained fully active under these conditions. We conclude that, due to endocytic uptake of liposome-incorporated Re-LPS and lipid A and subsequent intralysosomal degradation, these immunomodulators are inactivated with respect to their potency to activate liver macrophages to tumor cytotoxicity.  相似文献   

15.
ABSTRACT

We investigated the binding, uptake and intracellular degradation of immunoliposomes by isolated rat liver macrophages in vitro. Immunoliposomes were prepared either by coupling a randomly thiolated anti-CC531 rat colon adenocarcinoma monoclonal antibody to bilayer-incorporated MPB-PE by means of a thioether linkage or by attaching it through its Fc moiety to the distal terminus of hydrazide-modified PEG-DSPE. The two immunoliposome preparations clearly differ in their interaction with the tumor target cells, as well as with the macrophages. At comparable antibody densities both cell types show 1.5–2-fold higher levels of association for the Hz-PEG-immunoliposomes than for the MPB-PEG-immunoliposomes. We provide evidence that immunoliposome macrophage-interaction is both Fc-receptor and scavenger receptor mediated to about equal extents. At low antibody density the hydrazide immunoliposomes favor interaction with the tumor cells to that with macrophages. At higher antibody densities, on the other hand, interaction of these liposomes with the macrophages is increasingly favored, mostly due to enhanced scavenger receptor mediated uptake. The rate of intracellular degradation of (immuno)liposomes internalized by liver macrophages is barely influenced by the presence of either PEG or immunoglobulins on the liposomal surface.  相似文献   

16.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

17.
In a mathematical model of the cellular antitumor immune response, we studied the possible role of antigenic modulation as a tumor escape mechanism. Modulated tumor cells arise from normal (fully antigenic) tumor cells when the latter interact with antibodies. Modulated tumor cells demodulate when antibody concentrations are sufficiently low. Through modulation, tumor cells become less sensitive to cytotoxic macrophages (cell lysis) and contribute less to the stimulation of the immune system. These experimental data are incorporated in a model which we have analyzed previously. The model incorporates interactions between macrophages and T lymphocytes, which lead to cellular antitumor immune reactions (i.e., to cytotoxic macrophages). Parameters were derived from the immune resistance of DBA/2 mice to the SL2 tumor. Although all parameters were chosen deliberately to favor the modulation process (i.e., modulation proceeds fast, demodulation slowly, and the killing rate is reduced 50-fold), modulation is found to be a poor tumor escape mechanism. Heterogeneous populations of modulated and normal tumor cells are easily rejected. Homogeneous populations of modulated cells do escape, however. We conclude that the impact of modulation as an escape mechanism remains small because modulated tumor cells do not appear until the immune system has been stimulated (immunized) by the fully antigenic tumor cells. Thus, the elimination of modulated tumor cells generally occurs merely as a side effect of the immune response which is directed primarily against the fully antigenic tumor cells. Parameter sensitivity analysis shows that this conclusion holds true only for cellular immunity. Conversely, the parameter analysis suggests that antigenic modulation plays a deleterious role in cytotoxic antibody responses (e.g., monoclonal antibody therapy).  相似文献   

18.
A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressivly when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential. Cross reactive killing was observed between all uv induced tumors tested as well as with a syngeneic benz[a]pyrene (BP) induced fibrosarcoma. No cytotoxicity was observed against normal syngeneic PEC's even through these cells were shown to be susceptible to lysis by anti-H-2k effector cells. It was concluded that: (a) A significant number of host-derived macrophages are present in uv tumor tissue. (b) These macrophages are important for the in vitro generation of tumor specific cytotoxicity. (c) Spleen cells from uv treated mice are capable of recognizing and responding against uv tumor associated antigens in vitro. Cytotoxic effector cells generated in response to uv induced tumors appear to have specificity for tumor associated antigens (TAA) present on all uv tumors tested as well as a syngeneic BP induced tumor. The relationship between in vivo and in vitro reactivity against uv tumors is discussed.  相似文献   

19.
Oxidation of low density lipoprotein (LDL) is a critical step for atherogenesis, and the role of the 12/15-lipoxygenase (12/15-LOX) as well as LDL receptor-related protein (LRP) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like J774A.1 cells overexpressing 12/15-LOX was inhibited by an anti-LRP antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [3H]cholesteryl linoleate and [125I]apoB, association with the cells of [3H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [125I]apoB, indicating selective uptake of [3H]cholesteryl linoleate from LDL to these cells. An anti-LRP antibody inhibited the selective uptake of [3H]cholesteryl ester by 62% and 81% with the 12/15-LOX-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [3H]cholesteryl linoleate-labeled 12/15-LOX-expressing cells increased the release of [3H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [3H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-LRP antibody by 75%. These results strongly suggest that LRP contributes to the LDL oxidation by 12/15-LOX in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.  相似文献   

20.
Small concentrations of recombinant murine interferon-gamma (MuIFN-gamma), recombinant human interleukin 1 (HuIL-1), and recombinant murine tumor necrosis factor (MuTNF), added separately to cultures of thioglycolate-elicited peritoneal macrophages, produced no cytotoxic activity against L5178Y cells, a tumor cell line which is resistant to the direct toxic effects of these cytokines, either alone or in combination. However, small concentrations of MuIFN-gamma when combined with small concentrations of either HuIL-1 or MuTNF activated these macrophages to produce cytotoxic effects against L5178Y cells; small concentrations of HuIL-1 and MuTNF in combination had no macrophage activating activity. Specific antibody to MuTNF blocked the macrophage-activating synergistic effects of MuIFN-gamma + HuIL-1, and specific antibody to HuIL-1 blocked the macrophage-activating activity of MuIFN-gamma + MuTNF, indicating that MuTNF was induced in macrophage cultures treated with MuIFN-gamma + HuIL-1, and that murine IL-1 was induced in macrophage cultures treated with MuIFN-gamma + MuTNF. These results indicate that all three cytokines are required for induction of antitumor cytotoxic activation of macrophages. Experiments with a concentration of MuIFN-gamma which alone could activate macrophages revealed that both MuTNF and murine IL-1 were required for this activation. The demonstration that small concentrations of these three cytokines can act synergistically, but not separately, to activate macrophages indicates the importance of cytokine combinations in immunoregulation and in anti-tumor cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号