首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction.  相似文献   

2.
Whereas antibodies have demonstrated the ability to mimic various compounds, classic heavy/light-chain antibodies may be limited in their applications. First, they tend not to bind enzyme active site clefts. Second, their size and complexity present problems in identifying key elements for binding and in using these elements to produce clinically valuable compounds. We have previously shown how cAb-Lys3, a single variable domain fragment derived from a lysozyme-specific camel antibody naturally lacking light chains, overcomes the first limitation to become the first antibody structure observed penetrating an enzyme active site. We now demonstrate how cAb-Lys3 mimics the oligosaccharide substrate functionally (inhibition constant for lysozyme, 50 nM) and structurally (lysozyme buried surface areas, hydrogen bond partners, and hydrophobic contacts are similar to those seen in sugar-complexed structures). Most striking is the mimicry by the antibody complementary determining region 3 (CDR3) loop, especially Ala104, which mimics the subsite C sugar 2-acetamido group; this group has previously been identified as a key feature in binding lysozyme. Comparative simplicity, high affinity and specificity, potential to reach and interact with active sites, and ability to mimic substrate suggest that camel heavy-chain antibodies present advantages over classic antibodies in the design, production, and application of clinically valuable compounds. Proteins 32:515–522, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Single domain camel antibodies: current status   总被引:19,自引:0,他引:19  
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH-VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a 'camelised' human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

4.
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH–VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a ‘camelised’ human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

5.
Several antibody fragment engineering techniques aim at intrinsic stability enhancement, but are not applied in a truly generic way. Here, a strategy is proposed whereby consistent gain in stability is accomplished by introducing a specific disulfide bond between two opposite β-strands in the hydrophobic core of the immunoglobulin heavy-chain variable domain of heavy-chain antibodies (Nanobody). Besides the rational design of a disulfide bond between residues 39 and 87, a Nanobody harboring an extra naturally occurring cystine between residues 54 and 78 was compared to an equivalent Nanobody without that cystine. Both novel disulfide cross-links were introduced in several Nanobodies in various combinations. Interestingly, only the extra naturally occurring cystine consistently increased the conformational and thermal stabilities of wild-type Nanobodies without affecting antigen binding.  相似文献   

6.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

7.
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.  相似文献   

8.
The new antigen receptor (IgNAR) antibodies from sharks are disulphide bonded dimers of two protein chains, each containing one variable and five constant domains. Three types of IgNAR variable domains have been discovered, with Type 3 appearing early in shark development and being overtaken by the antigen-driven affinity-matured Type 1 and 2 response. Here, we have determined the first structure of a naturally occurring Type 2 IgNAR variable domain, and identified the disulphide bond that links and stabilizes the CDR1 and CDR3 loops. This disulphide bridge locks the CDR3 loop in an "upright" conformation in contrast to other shark antibody structures, where a more lateral configuration is observed. Further, we sought to model the Type 3 isotype based on the crystallographic structure reported here. This modeling indicates (1) that internal Type 3-specific residues combine to pack into a compact immunoglobulin core that supports the CDR loop regions, and (2) that despite apparent low-sequence variability, there is sufficient plasticity in the CDR3 loop to form a conformationally diverse antigen-binding surface.  相似文献   

9.
Human cytomegalovirus (HCMV) infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.  相似文献   

10.
Camelids produce functional antibodies devoid of light chains and CH1 domains. The antigen-binding fragment of such heavy chain antibodies is therefore comprised in one single domain, the camelid heavy chain antibody VH (VHH). Here we report on the structures of three dromedary VHH domains in complex with porcine pancreatic alpha-amylase. Two VHHs bound outside the catalytic site and did not inhibit or inhibited only partially the amylase activity. The third one, AMD9, interacted with the active site crevice and was a strong amylase inhibitor (K(i) = 10 nm). In contrast with complexes of other proteinaceous amylase inhibitors, amylase kept its native structure. The water-accessible surface areas of VHHs covered by amylase ranged between 850 and 1150 A(2), values similar to or even larger than those observed in the complexes between proteins and classical antibodies. These values could certainly be reached because a surprisingly high extent of framework residues are involved in the interactions of VHHs with amylase. The framework residues that participate in the antigen recognition represented 25-40% of the buried surface. The inhibitory interaction of AMD9 involved mainly its complementarity-determining region (CDR) 2 loop, whereas the CDR3 loop was small and certainly did not protrude as it does in cAb-Lys3, a VHH-inhibiting lysozyme. AMD9 inhibited amylase, although it was outside the direct reach of the catalytic residues; therefore it is to be expected that inhibiting VHHs might also be elicited against proteases. These results illustrate the versatility and efficiency of VHH domains as protein binders and enzyme inhibitors and are arguments in favor of their use as drugs against diabetes.  相似文献   

11.
The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation.  相似文献   

12.
The murine antibody R24 and mouse-human Fv-IgG1(kappa) chimeric antibody chR24 are specific for the cell-surface tumor antigen disialoganglioside GD3. X-ray diffraction and surface plasmon resonance experiments have been employed to study the mechanism of "homophilic binding," in which molecules of R24 recognize and bind to other molecules of R24 though their heavy chain variable domains. R24 exhibits strong binding to liposomes containing disialoganglioside GD3; however, the kinetics are unusual in that saturation of binding is not observed. The binding of chR24 to GD3-bearing liposomes is significantly weaker, suggesting that cooperative interactions involving antibody constant regions contribute to R24 binding of membrane-bound GD3. The crystal structures of the Fabs from R24 and chR24 reveal the mechanism for homophilic binding and confirm that the homophilic and antigen-binding idiotopes are distinct. The homophilic binding idiotope is formed largely by an anti-parallel beta-sheet dimerization between the H2 complementarity determining region (CDR) loops of two Fabs, while the antigen-binding idiotope is a pocket formed by the three CDR loops on the heavy chain. The formation of homophilic dimers requires the presence of a canonical conformation for the H2 CDR in conjunction with participation of side chains. The relative positions of the homophilic and antigen-binding sites allows for a lattice of GD3-specific antibodies to be constructed, which is stabilized by the presence of the cell membrane. This model provides for the selective recognition by R24 of cells that overexpress GD3 on the cell surface.  相似文献   

13.
The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.  相似文献   

14.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
In camelids, a subset of the immunoglobulins consists of heavy-chain homodimers devoid of light chains, and are thus called heavy-chain IgGs (hcIgGs). Their variable region (VHH) is the smallest antigen-binding fragment possible, and being just one polypeptide chain it is especially suitable for engineering. In particular, camelid single domain antibodies might be very useful for molecular mimicry and anti-idiotypic vaccination. In the present work, we show that llamas immunized with an anti-DNA mouse mAb develop an important anti-Id response. Selection of VHHs by phage display, with specific elution of bound phages with the external antigenic DNA, shows that selected private anti-Id VHHs compete for binding to the external antigen and bear a functional mimicry of the DNA. These results indicate that llama anti-Id single domain antibodies would be an excellent tool for molecular mimicry studies.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):1077-1088
ABSTRACT

We analyzed pairs of protein-binding, peptide-binding and hapten-binding antibodies crystallized as complex and in the absence of the antigen with and without conformational differences upon binding in the complementarity-determining region (CDR)-H3 loop. Here, we introduce a molecular dynamics-based approach to capture a diverse conformational ensemble of the CDR-H3 loop in solution. The results clearly indicate that the inherently flexible CDR-H3 loop indeed needs to be characterized as a conformational ensemble. The conformational changes of the CDR-H3 loop in all antibodies investigated follow the paradigm of conformation selection, because we observe the experimentally determined binding competent conformation without the presence of the antigen within the ensemble of pre-existing conformational states in solution before binding. We also demonstrate for several examples that the conformation observed in the antibody crystal structure without antigen present is actually selected to bind the carboxyterminal tail region of the antigen-binding fragment (Fab). Thus, special care must be taken when characterizing antibody CDR-H3 loops by Fab X-ray structures, and the possibility that pre-existing conformations are present should always be considered.  相似文献   

17.
Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B‐cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen‐binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single‐site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies. Proteins 2014; 83:771–780. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

18.
Wong SE  Sellers BD  Jacobson MP 《Proteins》2011,79(3):821-829
Prior studies suggest that antibody affinity maturation is achieved, in part, via prearranging the CDRs for binding. The implication is that the entropy cost of binding is reduced and that this rigidification occurs as a consequence of somatic mutations during maturation. However, how these mutations modulate CDR flexibility is unclear. Here, molecular dynamics simulations captured CDR flexibility differences between four mature antibodies (7G12, AZ28, 28B4, and 48G7) and their germline predecessors. Analysis of their trajectories: (1) rationalized how mutations during affinity maturation restrict CDR motility, (2) captured the equilibrium between bound and unbound conformations for the H3 loop of unliganded 7G12, and (3) predicted a set of new mutations that, according to our simulations, should diminish binding by increasing flexibility.  相似文献   

19.
Genetic factors, as well as antigenic stimuli, can influence antibody repertoire formation. Moreover, the affinity of antigen for unmutated naïve B cell receptors determines the threshold for activation of germinal center antibody responses. The gp41 2F5 broadly neutralizing antibody (bNAb) uses the VH2-5 gene, which has 10 distinct alleles that use either a heavy-chain complementarity-determining region 2 (HCDR2) aspartic acid (DH54) or an HCDR2 asparagine (NH54) residue. The 2F5 HCDR2 DH54 residue has been shown to form a salt bridge with gp41 665K; the VH2-5 germ line allele variant containing NH54 cannot do so and thus should bind less avidly to gp41. Thus, the induction of 2F5 bNAb is dependent on both genetic and structural factors that could affect antigen affinity of unmutated naïve B cell receptors. Here, we studied allelic variants of the VH2-5 inferred germ line forms of the HIV-1 gp41 bNAb 2F5 for their antigen binding affinities to gp41 linear peptide and conformational protein antigens. Both VH2-5 2F5 inferred germ line variants bound to gp41 peptides and protein, including the fusion intermediate protein mimic, although more weakly than the mature 2F5 antibody. As predicted, the affinity of the NH54 variant for fusion-intermediate conformation was an order of magnitude lower than that of the DH54 VH2-5 germ line antibody, demonstrating that allelic variants of 2F5 germ line antibodies differentially bind to gp41. Thus, these data demonstrate a genetically determined trait that may affect host responses to HIV-1 envelope epitopes recognized by broadly neutralizing antibodies and has implications for unmutated ancestor-based immunogen design.  相似文献   

20.
Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号