首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
S J Lauer  K S Browning  J M Ravel 《Biochemistry》1985,24(12):2928-2931
Rabbit polyclonal antibodies to wheat germ initiation factor 3 (eIF-3) were obtained and were shown to react strongly with 4 of the 10 subunits of eIF-3 (pp116, pp87, pp56, and pp36). Two mouse monoclonal antibodies were obtained, one of which reacts specifically with pp87 and one of which reacts specifically with pp36. Highly purified anti-pp87 has no effect on the activity of eIF-3. Highly purified polyclonal antibodies and anti-pp36 inhibit the ability of eIF-3 to support polypeptide synthesis in vitro and the ability of eIF-3 to support mRNA binding to 40S ribosomal subunits. These results provide additional evidence that pp116, pp87, and pp36 are in exposed positions in the eIF-3 particle and that pp36 is essential for activity.  相似文献   

2.
We showed previously that wheat germ extracts contain two forms of protein synthesis initiation factor 4F that have very similar functional properties (Browning, K. S., Lax, S. R., and Ravel, J. M. (1987) J. Biol. Chem. 262, 11228-11232). One form, designated eIF-4F, is a complex containing two subunits, p220 and p26. The other form, designated eIF-(iso)4F, is a complex containing two subunits, p82 and p28, which are antigenically distinct from the subunits of eIF-4F. Both the p26 subunit of eIF-4F and the p28 subunit of eIF-(iso)4F are m7G cap-binding proteins. In this investigation, affinity-purified antibodies to the p220 and p26 subunits of wheat germ eIF-4F and to the p82 and p28 subunits of wheat germ eIF-(iso)4F were used to determine if isozyme forms of eIF-4F are present in maize and cauliflower. Extracts from wheat germ, maize root tips, and cauliflower inflorescences were partially purified by adsorption on m7GTP-Sepharose and elution with m7GTP (MGS eluate). Analysis by sodium dodecyl sulfate gel electrophoresis and immunoblotting with antibodies to the subunits of the wheat germ factors showed that the MGS eluate from maize contains polypeptides that react with antibodies to the p82 and p28 subunits of wheat eIF-(iso)4F, as well as polypeptides that react with antibodies to the p220 and p26 subunits of wheat eIF-4F. The MGS eluate from cauliflower also contains polypeptides that reacted with antibodies to the subunits of wheat eIF-(iso)4F. These results indicate that both maize and cauliflower contain the isozyme form of eIF-4F. In addition, it was found that the factors in the MGS eluate from maize support polypeptide synthesis in a system from wheat deficient in eIF-4F and eIF-(iso)4F, whereas the factors in the MGS eluate from cauliflower support polypeptide synthesis only to a small extent.  相似文献   

3.
S J Lauer  E A Burks  J M Ravel 《Biochemistry》1985,24(12):2924-2928
Wheat germ initiation factor 3 (eIF-3) is a large (15 S) particle containing 10 subunits with molecular weights ranging from 28 000 to 116 000. Two forms of wheat germ eIF-3 which differ in ability to support polypeptide synthesis in vitro have been obtained by chromatography on carboxymethyl-Sephadex (CM-Sephadex). The less active form is not retained on CM-Sephadex in 50 mM KCl and contains lower amounts of two subunits, the 116 000-dalton polypeptide (pp116) and the 36 000-dalton polypeptide (pp36). The more active form is retained on CM-Sephadex in 50 mM KCl and is eluted by 150 mM KCl. Treatment of the more active form with small amounts of trypsin results in a rapid degradation of four of the subunits (pp116, pp107, pp87, and pp36) and in a rapid loss in the ability to support polypeptide synthesis. Trypsin treatment also diminishes the ability of eIF-3 to support the binding of mRNA to 40S ribosomal subunits. These findings indicate that pp116, pp107, pp87, and pp36 are in exposed positions in the eIF-3 particle and that pp116 and/or pp36 are essential for activity.  相似文献   

4.
A wheat germ ribosome dissociation factor, eukaryotic initiation factor 6 (eIF-6), has been purified almost to homogeneity from the 25 to 40% ammonium sulfate fraction of the postribosomal supernatant. This dissociation factor is distinct from initiation factor eIF-3 and its chromatographic properties permit its separation from the known wheat germ initiation factors. Under certain conditions, eIF-6 stimulates the incorporation of amino acids into polypeptides in a partially fractionated wheat germ cell-free system. The eight-step purification procedure developed includes chromatography on DEAE-cellulose, phosphocellulose, Sephadex G-75, and hydroxyapatite and yields a dissociation factor more than 80% pure. The purified factor is composed of a single polypeptide chain with a molecular weight of approximately 23,000 as determined by gel filtration chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is an acidic protein which is heat labile and is inactivated by treatment with N-ethylmaleimide. The dissociation factor is much more effective in preventing the reassociation of 40 S and 60 S ribosomal subunits than in directly dissociating 80 S ribosomes. Like Escherichia coli IF-3, about 10 pmol of the dissociation factor are required to dissociate 1 pmol of ribosomes.  相似文献   

5.
Previous work has shown that eukaryotic initiation factor (eIF)-4B from wheat germ is a complex containing two subunits, 80 and 28 kDa, and eIF-4F from wheat germ is a complex containing two subunits, 220 and 26 kDa (Lax, S., Fritz, W., Browning, K., and Ravel, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 330-333). Here we show that both the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F cross-link to the 5' terminus of capped and oxidized satellite tobacco necrosis virus RNA in the absence of ATP and that the cross-linking of both polypeptides is inhibited by m7GDP. Several lines of evidence indicate that the 28-kDa and the 26-kDa cap binding proteins of eIF-4B and eIF-4F are antigenically distinct polypeptides. Rabbit polyclonal antibodies raised to intact eIF-4B or to the isolated 28-kDa subunit of eIF-4B react strongly with the 28-kDa subunit of eIF-4B on immunoblots, but show only a very weak reaction with the 26-kDa subunit of eIF-4F under the same conditions. In addition, a mouse monoclonal antibody was obtained that reacts strongly with the 26-kDa subunit of eIF-4F but does not react with the 28-kDa subunit of eIF-4B. Evidence is presented also which indicates that the higher molecular weight subunits of eIF-4B and eIF-4F are antigenically distinct. Rabbit polyclonal antibodies raised to intact eIF-4B or the isolated 80-kDa subunit inhibit eIF-4B-dependent polypeptide synthesis but do not inhibit eIF-4F-dependent polypeptide synthesis. Rabbit polyclonal antibodies raised to eIF-4F inhibit eIF-4F-dependent polypeptide synthesis but do not inhibit eIF-4B-dependent polypeptide synthesis.  相似文献   

6.
Four initiation factors (eIF-2, -3, -4B, and -4F), previously shown to be phosphorylated in vivo, are each phosphorylated to a significant extent in vitro (greater than 0.3 mol of phosphate/mol of factor) by at least three different protein kinases. An S6 kinase from liver, an active form of protease-activated kinase II which modifies the same sites on S6 as those phosphorylated in vivo in response to mitogens, phosphorylates the beta subunit of eIF-2, eIF-3 (p120-p130), eIF-4B, and eIF-4F (p220). The Ca2+, phospholipid-dependent protein kinase phosphorylates eIF-2 beta, eIF-3 (p170, p120-p130), eIF-4B, and eIF-4F (p220, p25). The cAMP-dependent protein kinase significantly modifies eIF-4B and, to a lesser extent, eIF-3 (p130). Casein kinase I incorporates phosphate only into eIF-4B, but to a limited extent. Casein kinase II phosphorylates eIF-2 beta, eIF-3 (p170, p120), and eIF-4B, while protease-activated kinase I modifies eIF-3 (p170, p120-p130), eIF-4B, and eIF-4F (p220). The mitogen-stimulated S6 kinase from 3T3-L1 cells, activated in response to insulin, does not phosphorylate any of the initiation factors. There is no significant incorporation of phosphate into eIF-2 alpha or -gamma, eIF-4A, eIF-4C, eIF-4D, EF-1, or EF-2 by any of the protein kinases examined. Phosphopeptide mapping of tryptic digests of the phosphorylated subunits shows that the individual protein kinases modify different sites. The sites phosphorylated in vitro reflect those modified in vivo as shown with eIF-4F in concomitant studies with reticulocytes treated with tumor-promoting phorbol ester (Morley, S.J., and Traugh, J. A. J. Biol. Chem., in press). Thus, we have identified multipotential protein kinases which modify four initiation factors phosphorylated in vivo and have shown that phosphorylation of these translational components can be coordinately regulated.  相似文献   

7.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

8.
Poliovirus infection of HeLa cells results in cleavage of the p220 subunit of eukaryotic initiation factor eIF-4F and inhibits cap-dependent initiation of protein synthesis. To examine the effect of virus-induced inhibition on the structure of initiation factor complexes involved in cap binding, the polypeptide compositions of cap affinity-purified complexes from uninfected and poliovirus-infected HeLa cells were analyzed. Monoclonal antibodies directed against p220 and an eIF-3 subunit, p170, were utilized to locate eIF-3 and eIF-4F on sucrose gradients and in fractions eluting from cap analog columns. This approach resulted in the purification of several different cap-binding complexes from different cellular subfractions and revealed significant differences in their composition after infection. The results indicate that eIF-3 and eIF-4F bind to the cap structure, possibly in the form of a complex, and that a modified form of eIF-3 alone has some cap-binding activity in the complete absence of p220, eIF-4A, and eIF-4E. Ribosome-derived complexes containing cleaved p220 are no longer associated with eIF-3 or eIF-4A, and a significant amount of cleaved p220 is associated with a unique cytoplasmic cap-binding complex. The cytoplasmic complex also contains Mr = 170,000 and 80,000 polypeptides, neither of which are major components of eIF-4F. These results demonstrate significant variation in the composition of cap-binding complexes from both infected and uninfected cells. They indicate that eIF-3 might play a direct role in cap binding and suggest that poliovirus-induced cleavage of p220 results in the release of the eIF-4A subunit from eIF-4F and abolishes an association between eIF-4F and eIF-3 which may function during the multifactor steps involved in initiation of cap-mediated translation.  相似文献   

9.
An efficient four-step procedure is described for preparing highly purified polypeptide chain initiation factor eIF-3 from rat liver microsomal saltwash. The method involves fractionation with ammonium sulfate between 25–40% saturation (0°C) followed by affinity chromatography on rRNA-cellulose, DEAE-cellulose chromatography and sucrose density gradient centrifugation. eIF-3 is eluted from the affinity column at a KCl concentration of 0.18 M. The purification is 10-times and the recovery of activity better than 85%. In the sucrose gradients, eIF-3 sediments as a 15 S particle indicating a total mass of 650 000 Da. The purified eIF-3 is highly active in stimulating globin synthesis in a fractionated translation system. Factor eIF-3 contains eight subunits with molecular weights ranging from 40 000 to 110 000. Seven of the subunits are present in one copy per eIF-3, whereas the factor contains two copies of one subunit. The isoelectric points of the factor subunits range from 5.5 to 7.3 with most of the polypeptides being acidic.  相似文献   

10.
The results of this investigation show that the 59-kDa protein synthesis initiation factor from wheat germ, designated eukaryotic initiation factor (eIF)-4G by Browning et al. (Browning, K.S., Maia, D.M., Lax, S.R., and Ravel, J.M. (1987) J. Biol. Chem. 262, 539-541), cross-links to the 5'-terminal cap of oxidized mRNA in the presence of eIF-4A, eIF-4F, and ATP, stimulates the RNA-dependent ATPase activities of eIF-4A and a mixture of eIF-4A and eIF-4F, and stimulates the unwinding activities of eIF-4A, eIF-4F, and a mixture of eIF-4A and eIF-4F. These findings strongly suggest that the 59-kDa factor from wheat germ is the functional equivalent of the 80-kDa protein synthesis initiation factor, eIF-4B, from mammalian cells. Recent reports indicate that the wheat germ initiation factor which contains two subunits of 80 and 28 kDa and which was given the designation "eIF-4B" by Lax et al. (Lax, S.R., Lauer, S.J., Browning, K. S., and Ravel, J.M. (1986) Methods Enzymol. 118, 109-128) is an isozyme form of eIF-4F and not the functional equivalent of mammalian eIF-4B. On the basis of functional characteristics we propose that the designation for the wheat germ factor containing the 80- and 28-kDa polypeptides be changed from eIF-4B to eIF-(iso)4F and the designation for the 59-kDa factor be changed from eIF-4G to eIF-4B.  相似文献   

11.
Monoclonal and polyclonal antibodies against eukaryotic protein synthesis initiation factor eIF-3 were produced and used to determine the factor concentration and its association with ribosomes in rabbit reticulocyte and HeLa cell lysates. In rabbit reticulocyte lysate we found 3-5 micrograms eIF-3 per mg total protein and in HeLa cell lysate 8-15 micrograms eIF-3 per mg total protein. The initiation factor eIF-3 was found both associated with 40 S ribosomal subunits and free in the post-ribosomal supernatant. However, no eIF-3 could be detected on mono- or polyribosomes.  相似文献   

12.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

13.
Eukaryotic initiation factor 4E (eIF-4E) is a 25-kDa phosphoprotein that binds to the 7-methylguanosine cap of mRNA and acts, along with other eIF-4 polypeptides, to unwind mRNA secondary structure at the 5' terminus. Recent studies have indicated that eIF-4E acts as a protooncogene, but only in its phosphorylated state. In order to determine the role of eIF-4E in oncogenesis, we examined its regulation and expression in cloned rat embryo fibroblasts transformed with the Harvey ras (Ha-ras) oncogene. The expression of Ha-ras increased the rate of protein synthesis but did not increase the levels of eIF-4E mRNA or protein. However, a dramatic increase (7-fold) in phosphate incorporation into eIF-4E was observed. The percentage of eIF-4E in the phosphorylated state was the same in transfected and control cells, indicating that both phosphorylation and dephosphorylation of eIF-4E were increased. Phosphopeptide mapping of eIF-4E from transformed cells indicated a single site of phosphorylation at Ser-53, which is the same as that identified previously in eIF-4E from reticulocytes and HeLa cells. These results indicate that p21ras is part of the signal transduction pathway leading to phosphorylation of eIF-4E. These findings also provide a potential mechanism for cell transformation by p21ras which involves the preferential stimulation of translation of certain mRNAs.  相似文献   

14.
Eukaryotic initiation factor (eIF)-5, isolated from rabbit reticulocyte lysates, is a monomeric protein of Mr = 58,000-62,000. Immunochemical methods were employed to identify eIF-5 in crude cell lysates. Antisera against purified denatured eIF-5 were prepared in rabbits and characterized by immunoblotting and immunoprecipitation techniques using native and denatured eIF-5 as antigens. Monospecific antibodies to denatured eIF-5 were affinity-purified using eIF-5 blotted onto aminophenylthioether paper. Rabbit reticulocytes, HeLa cells and mouse L cells were lysed directly into a denaturing buffer containing 3% sodium dodecyl sulfate. The denatured proteins were analyzed by polyacrylamide gel electrophoresis followed by immunoblotting with anti-eIF-5 antibodies. With each lysate, one major immunoreactive polypeptide was observed whose molecular weight corresponded to that of purified eIF-5 (Mr = 58,000-62,000). No degradation products or precursor forms of molecular weight higher than 62,000 were detected in any lysate. These results indicate that isolated eIF-5 is the same size as that found in crude lysates. Additional characterization of eIF-5 indicates that purified eIF-5 can be phosphorylated at serine residues in vitro by casein kinase II. Furthermore, in vitro phosphorylated eIF-5 retains full biological activity in catalyzing the joining of 60 S ribosomal subunits to a preformed 40 S ribosomal initiation complex to form an 80 S initiation complex. Based on its specific activity, we demonstrate that 1 pmol of rabbit reticulocyte eIF-5 mediates the formation of approximately 180 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

15.
Bovine cornea extracted with 0.154 M NaCl yielded a protein fraction which (i) inhibited protein synthesis in rabbit reticulocyte lysates, and (ii) reduced the incorporation of formyl-methionine from f[35S]Met-tRNA(f) into polypeptides. The inhibition was reversed by millimolar concentrations of glucose 6-phosphate or cAMP and partially reversed by the addition of initiation factor eIF-2. Thus, the corneal inhibitor may act by directly interfering with the activity of eIF-2.  相似文献   

16.
Monospecific polyclonal antibodies against seven proteins of the 40 S subunit of rat liver ribosomes were used to identify ribosomal proteins involved in interaction with initiation factor eIF-2 in the quaternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf X 40 S ribosomal subunit]. Dimeric immune complexes of 40 S subunits mediated by antibodies against ribosomal proteins S3a, S13/16, S19 and S24 were found to be unable to bind the ternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf]. In contrast, 40 S dimers mediated by antibodies against proteins S2, S3 and S17 were found to bind the ternary complex. Therefore, from the ribosomal proteins tested, only proteins S3a, S13/16, S19 and S24 are concluded to be involved in eIF-2 binding to the 40 S subunit.  相似文献   

17.
We have obtained highly purified preparations of the heme-controlled eukaryotic initiation factor 2 alpha-subunit (eIF-2 alpha) kinase (HCI) from rabbit reticulocyte lysates containing five different polypeptides. One of these is a 87-kDa (p87) phosphopeptide which appears to show an autokinase activity. The controlled digestion with trypsin of HCI preparations leads to the suggestion that phosphorylation of p87 is not needed for kinase activity and, furthermore, that another 89-kDa polypeptide could be the kinase catalytic subunit. In agreement with this, monoclonal antibodies directed against p87 do not interfere with eIF-2 alpha kinase activity. Moreover, the anti-p87 antibodies and those directed against the mammalian 90-kDa heat shock protein recognize the same p87 polypeptide from rabbit reticulocyte lysates. Upon incubation of the HCI preparation with hemin (5-10 microM), the eIF-2 alpha kinase is converted into an inactive form and appears to become associated with related peptides forming high molecular weight complexes which can be reversibly activated by 2-mercaptoethanol. The maintenance of the integrity of the porphyrin ring is absolutely required for kinase inactivation and although the presence of metal ion is not essential, the iron and cobalt metalloporphyrins are more effective than protoporphyrin IX. The formation of the inactive form of HCI by hemin is prevented by either N-ethylmaleimide, monoclonal antibodies directed against p87, or phosphorylation of p87. The data strongly suggest that hemin regulates eIF-2 alpha kinase activity by promoting formation of the inactive dimer HCI.p87 via disulfide bonds and direct binding of hemin. A model of HCI regulation is discussed.  相似文献   

18.
Abstract: We used in vitro translation and antibodies against phosphoserine and the eukaryotic initiation factors eIF-4E, eIF-4G, and eIF-2α to examine the effects of global brain ischemia and reperfusion on translation initiation and its regulation in a rat model of 10 min of cardiac arrest followed by resuscitation and 90 min of reperfusion. Translation reactions were performed on postmitochondrial supernatants from brain homogenates with and without aurintricarboxylic acid to separate incorporation due to run-off from incorporation due to peptide synthesis initiated in vitro. The rate of leucine incorporation due to in vitro-initiated protein synthesis in normal forebrain homogenates was ∼0.4 fmol of leucine/min/µg of protein and was unaffected by 10 min of cardiac arrest, but 90 min of reperfusion reduced this rate 83%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blots of these homogenates showed that neither 10 min of global brain ischemia nor 90 min of reperfusion induced significant alterations in the quantity or serine phosphorylation of eIF-4E. However, we observed in all 90-min-reperfused samples eIF-4G fragments that also bound eIF-4E. The amount of eIF-2α was not altered by ischemia or reperfusion, and immunoblotting after isoelectric focusing did not detect serine-phosphorylated eIF-2α in normal samples or in those obtained after ischemia without reperfusion. However, serine-phosphorylated eIF-2α was uniformly present after 90 min of reperfusion and represented 24 ± 3% of the eIF-2α in these samples. The serine phosphorylation of eIF-2α and partial fragmentation of eIF-4G observed after 90 min of reperfusion offer an explanation for the inhibition of protein synthesis.  相似文献   

19.
This electron microscopic study demonstrates that formation of a functional eukaryotic 40S initiation complex is accompanied by conformational changes which obscure the characteristic structural features of the 40S ribosomal subunits and of the initiation factor eIF-3, the only macromolecular components of the complex individually resolvable by conventional high resolution electron microscopy. The complex, characterized by a sedimentation coefficient of 46S, appears as a globular particle with a diameter of about 280 A and several characteristic protrusions and incisions. Similar structures were obtained with [40S X eIF-3] initiation complexes formed by interaction of eIF-3 from rabbit reticulocytes with 40S ribosomal subunits from either A. salina cysts or mouse liver. Incubation of eIF-3 with prokaryotic 30S subunits from E. coli produced no [30S X eIF-3] structures. The binding of eIF-3 to 40S subunits is weak, and both the [40S X eIF-3] and the complete 40S initiation complexes have to be stabilized by glutaraldehyde fixation. The extensive conformational changes associated with the complex formation preclude direct electron microscopic localization of eIF-3, a globular protein approximately 100 A in diameter, in the initiation domain of the 40S subunit.  相似文献   

20.
The cleavage of the p220 subunit of eukaryotic initiation factor 4F (eIF-4F) that is induced by the poliovirus protease 2A has been shown previously to require another translation initiation factor, eIF-3. The role of eIF-3 in this cleavage reaction, however, is not known. An antiserum was raised against human eIF-3 and used to analyze the eIF-3 subunit composition in poliovirus-infected and uninfected HeLa cells and after incubation of eIF-3 in vitro with viral 2A protease. No evidence for 2Apro-dependent cleavage of any eIF-3 subunit was detected. Infected cells contain an activity that catalyzes the cleavage of p220 to a specific set of cleavage products. This activity is thought to be an activated form of a latent cellular protease. The p220-specific cleavage activity was partially purified. It was resolved from eIF-3 by both gel filtration and anion-exchange chromatography. Neither intact eIF-3 nor any detectable subunits of eIF-3 were found to copurify with the p220-specific cleavage activity. The latter activity behaves as a protein of 55,000 to 60,000 molecular weight and is inhibited by alkylating agents and metals, which indicates the presence of essential thiol groups. When this activity was incubated with partially purified p220, cleavage occurred only in the presence of eIF-3. Thus, eIF-3 appears to play a role in the p220 cleavage cascade which is subsequent to the 2Apro-induced activation of the p220-specific protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号