首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial quorum sensing (QS) often coordinates the expression of other, generally more costly public goods involved in virulence and nutrient acquisition. In many Proteobacteria, the basic QS circuitry consists of a synthase that produces a diffusible acyl-homoserine lactone and a cognate receptor that activates public goods expression. In some species, the circuitry also contains negative regulators that have the potential to modulate the timing and magnitude of activation. In this study, we experimentally investigated the contribution of this regulatory function to the evolutionary stability of public goods cooperation in the opportunistic pathogen Pseudomonas aeruginosa. We compared fitness and public goods expression rates of strains lacking either qteE or qscR, each encoding a distinct negative regulator, with those of the wild-type parent and a signal-blind receptor mutant under defined growth conditions. We found that (1) qteE and qscR mutations behave virtually identically and have a stronger effect on the magnitude than on the timing of expression, (2) high expression in qteE and qscR mutants imposes a metabolic burden under nutrient conditions that advance induction and (3) high expression in qteE and qscR mutants increases population growth when QS is required, but also permits invasion by both wild-type and receptor mutant strains. Our data indicate that negative regulation of QS balances the costs and benefits of public goods by attenuating expression after transition to the induced state. As the cells cannot accurately assess the amount of cooperation needed, such bet-hedging would be advantageous in changing parasitic and nonparasitic environments.  相似文献   

2.
Mutant strains were chemically induced by treatment with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and UV irradiation. UV and NTG mutation rates were obtained that were both consistent with the organism being haploid. Three types of mutants were produced: (a) strains deficient in both beta- and gamma-carotene, the only carotenoids found in the wild type; phenotypes include albinos (translucent, dull white, "snow white") and cream-colored on agar as compared to the yellow-orange color of wild type colonies; (b) strains requiring adenine, guanine or cytosine in addition to the minimal medium for growth; (c) mutants that grow at a rate less than 40% of the wild type in minimal medium.  相似文献   

3.
SYNOPSIS. Mutant strains were chemically induced by treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and UV irradiation. UV and NTG mutation rates were obtained that were both consistent with the organism being haploid. Three types of mutants were produced: (a) strains deficient in both β- and γ-carotene, the only carotenoids found in the wild type; phenotypes include albinos (translucent, dull white, “snow white”) and cream-colored on agar as compared to the yellow-orange color of wild type colonies; (b) strains requiring adenine, guanine or cytosine in addition to the minimal medium for growth; (c) mutants that grow at a rate less than 40% of the wild type in minimal medium.  相似文献   

4.
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.  相似文献   

5.
Ethanol-sensitive mutants of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Saccharomyces cerevisiae mutants unable to grow at ethanol concentrations at which the wild type strain S288C does grow, have been isolated. Some of them show additional phenotypic alterations in colony size, temperature sensitivity and viability in ethanol, which cosegregate with the growth sensitivity in ethanol. 21 selected monogenic ethanol-sensitive mutants define 20 complementation groups, denominated ETA1 to ETA20, which indicates that there is a high number of genes involved in the ethanol tolerance/sensitivity mechanism.Out of 21 selected monogenic mutants, 20 are not altered in the glycolytic pathway since, when maintained in glucosesupplemented medium, they can produce as much ethanol as the wild type and at about the same velocity. Nor do any of the mutants seem to be altered in the lipid biosynthetic pathway since, whether grown in the absence or in the presence of ethanol, their concentration of fatty acids and ergosterol is similar to that of the wild type under the same conditions. Therefore growth sensitivity to ethanol does not seem necessarily to be related to carbohydrate or lipid metabolism.Non-common abbreviations YP yeast extract peptone medium - YPD yeast extract peptone dextrose agar or medium - YPG yeast extract peptone glycerol agar - YPDE yeast extract peptone dextrose ethanol agar or medium - SD yeast nitrogen base dextrose agar - SPO yeast extract potassium acetate glucose agar - PD parental ditype - NPD non-parental ditype - TT tetratype  相似文献   

6.
Autolytic enzyme-deficient mutants of Bacillus subtilis 168.   总被引:56,自引:45,他引:11       下载免费PDF全文
Mutants of Bacillus subtilis strain 168 have been isolated that are at least 90 to 95% deficient in the autolytic enzymes N-acetylmuramyl-L-alanine amidase and endo-beta-N-acetylglucosaminidase. These mutants grow at normal rates as very long chains of unseparated cells. The length of the chains is directly related to the growth rates. They are nonmotile and have no flagella, but otherwise appear to have normal cell morphology. Their walls are fully sysceptible to enzymes formed by the wild type and have the same chemical composition as the latter. Cell wall preparations from the mutants lyse at about 10% of the rate of those from the isogenic wild type, with the correspondingly small liberation of both the amino groups of alanine at pH 8.0 and of reducing groups at pH 5.6. Likewise, Microcococcus luteus walls at pH 5.6 and B. subtilis walls at pH 8 are lysed only very slowly by LiCl extracts made from the mutants as compared with rates obtained with wild-type extracts. Thus, the activity of both autolytic enzymes in the mutants is depressed. The frequencies of transformation, the isolation of revertants, and observations with a temperature-sensitive mutant all point to the likelihood that the pleiotropic, phenotypic properties of the strains are due to a single mutation. The mutants did not produce more protease or amylase than did the wild type. They sporulate and the spores germinate normally. The addition of antibiotics to exponentially growing cultures prevents wall synthesis but leads to less lysis than is obtained with the wild type. The bacteriophage PBSX can be induced in the mutants by treatment with mitomycin C.  相似文献   

7.
We use the budding yeast, Saccharomyces cerevisiae, to investigate one model for the initial emergence of multicellularity: the formation of multicellular aggregates as a result of incomplete cell separation. We combine simulations with experiments to show how the use of secreted public goods favors the formation of multicellular aggregates. Yeast cells can cooperate by secreting invertase, an enzyme that digests sucrose into monosaccharides, and many wild isolates are multicellular because cell walls remain attached to each other after the cells divide. We manipulate invertase secretion and cell attachment, and show that multicellular clumps have two advantages over single cells: they grow under conditions where single cells cannot and they compete better against cheaters, cells that do not make invertase. We propose that the prior use of public goods led to selection for the incomplete cell separation that first produced multicellularity.  相似文献   

8.
9.
Auxin-resistant mutants of Arabidopsis have been induced and isolated by screening for survivors on a medium containing the herbicide 2,4-D. Thirty independently arisen mutants have been isolated in this way and one of them, P 83, has been investigated in detail. When wild type and P 83 are compared in concentration/response curves, where the response is the inhibition of root growth, the ED50 values of the auxins, 2,4-D and IAA, are 14-fold higher for the mutant. The mutant also responds differently to gravity: its roots do not show positive geotropism, but tend to grow with a clockwise curvature on agar surfaces. The seedling roots of the mutant also grow more rapidly than those of the wild type in the absence of 2,4-D, following faster germination. The F1 between P 83 and wild type is similar to the latter, but has a slightly increased resistance to 2,4-D. Results obtained from the F2, F3 and backcross generations suggest monofactorial inheritance. Most of the other 29 mutants have the P 83 phenotype, but at least five are different. Four have lower levels of resistance to 2,4-D and P 83, and their roots appear to respond normally to gravity. One mutant has an abnormal georesponse and a much higher level of resistance to 2,4-D than P 83.  相似文献   

10.
Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL.  相似文献   

11.
A total of 24 high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942 have been isolated and partially characterized. These chemically induced mutants are able to grow at 1% CO2, on agar media, but are incapable of growth at air levels of CO2. All the mutants were able to accumulate inorganic carbon (Ci) to levels similar to or higher than wild type cells, but were apparently unable to generate intracellular CO2. On the basis of the rate of Ci release following a light (5 minutes) → dark transition two extreme phenotypes (fast and slow release mutants) and a number of `intermediate' mutants (normal release) were identified. Compared to wild-type cells, Type I mutants had the following characteristics: fast Ci release, normal internal Ci pool, normal carbonic anhydrase (CA) activity in crude extracts, reduced internal exchange of 18O from 18O-labeled CO2, 1% CO2 requirement for growth in liquid media, normal affinity of carboxylase for CO2, and long, rod-like carboxysomes. Type II mutants had the following characteristics: slow Ci release, increased internal Ci pool, normal CA activity in crude extracts, normal internal 18O exchange, a 3% CO2 requirement for growth in liquid media, high carboxylase activity, normal affinity of carboxylase for CO2, and normal carboxysome structure but increased in numbers per cell. Both mutant phenotypes appear to have genetic lesions that result in an inability to convert intracellular HCO3 to CO2 inside the carboxysome. The features of the type I mutants are consistent with a scenario where carboxysomal CA has been mistargeted to the cytosol. The characteristics of the type II phenotype appear to be most consistent with a scenario where CA activity is totally missing from the cell except for the fact that cell extracts have normal CA activity. Alternatively the type II mutants may have a lesion in their capacity for H+ import during photosynthesis.  相似文献   

12.
Mutant yeast strains were constructed which carry insertion mutations in each of the glyceraldehyde-3-phosphate dehydrogenase structural genes which have been designated TDH1, TDH2, and TDH3. Haploid strains carrying mutations in TDH1 and TDH2 as well as TDH1 and TDH3 were isolated from crosses between strains carrying the appropriate single mutations. The three single mutants as well as the two double mutants grow at wild type rates when ethanol is used as carbon source. Mutant strains lacking only a functional TDH2 allele or a TDH3 allele grow at 50 and 75% of the rate observed for wild type cells, respectively, when glucose is used as carbon source. No growth phenotype was observed for strains lacking only a functional TDH1 allele when either fermentable or nonfermentable carbon sources were used. Evidence is presented that strains lacking functional TDH2 and TDH3 alleles are not viable. These data demonstrate that the presence of a functional TDH2 or TDH3 allele is required for cell growth.  相似文献   

13.
Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control.  相似文献   

14.
Three mutants of Arabidopsis thaliana deficient in adenine phosphoribosyl transferase activity were isolated by selecting for germination of seeds on a medium containing 0.1 millimolar 2,6-diaminopurine. In each of the mutants, diaminopurine resistance was due to a recessive nuclear mutation at a locus designated apt. The mutants grow more slowly than wild type, and are male sterile due to abortion of pollen development after the meiotic divisions of the pollen mother cells. The reliability and ease with which the mutants can be selected should afford novel opportunities to investigate purine metabolism, pollen development, and genetic problems which require the ability to select for loss-of-function mutations.  相似文献   

15.
G E Jones  P A Sargent 《Cell》1974,2(1):43-54
Spontaneous mutants of cultured Chinese hamster cells (line CHO) deficient in APRT have been isolated by selection in 8-azaadenine (AA). Loss of APRT activity occurs in two discrete steps. In the first step, about 65% of total activity is lost; in the second step, most or all of the remaining activity is lost. Cells totally deficient in APRT are highly resistant to AA and cannot utilize exogenous adenine as a source of purines for cell growth. Cells partially deficient in the enzyme exhibit resistance to AA intermediate to that of wild type and fully deficient cells. Growth of cells partially deficient in APRT is inhibited in medium containing drug by the presence of large numbers of wild type cells, but cells totally deficient in the enzyme are not inhibited by the presence of either partially deficient or wild type cells.Stepwise loss of APRT activity probably has a genetic origin. The mutants exhibit stable phenotypes, and the frequency of fully deficient cells in a partially deficient population is enhanced by treatment with a mutagen. The rate of spontaneous mutation from partial to total deficiency is 3 ± 0.8 × 10?7 per cell generation, and reversion from full to partial deficiency can occur. Total lack of APRT activity is recessive to its presence, but the specific activity of the enzyme in hybrid cells depends quantitatively upon the specific activities in the two parents.  相似文献   

16.
Listeria monocytogenes is a facultative intracellular pathogen which can escape bactericidal mechanisms and grow within macrophages. The intracellular environment of macrophages is one of the most stressful environments encountered by an invading bacterium during the course of infection. To study the role of the major stress protein, DnaK, of L. monocytogenes in survival under intracellular stress induced by macrophage-phagocytosis as well as under extracellular environmental stresses, we cloned, sequenced, and analyzed the dnaK locus from L. monocytogenes. Then we constructed an insertional mutation in the dnaK gene by homologous recombination and characterized it. Sequencing has revealed that the dnaK locus consists of four open reading frames in the order hrcA-grpE-dnaK-dnaJ. The mutant grows neither at temperatures above 39 degrees C nor under acidic conditions e.g. pH 3.0. Using the macrophage cell line JA-4, the ability of the dnaK mutant to grow intracellularly was examined. Immediately after phagocytosis, the number of viable dnaK mutant bacteria found within macrophages was significantly lower compared to that of intracellular wild type bacteria. However, following a 1-3 h latency period, the mutant multiplied in a similar fashion to the wild type within macrophage cells. A quantitative analysis of intracellular bacteria in macrophage cells by microscope and a binding assay of bacteria to the surface of macrophages by ELISA revealed that the lower number of viable dnaK mutant in macrophages after phagocytosis is due to the low efficiency of phagocytosis resulting from the reduced binding capacity of the dnaK mutant. These results demonstrate that DnaK of L. monocytogenes is essentially required for survival under high temperatures and acidic conditions. Though it does not largely contribute to the survival of L. monocytogenes in macrophage cells, it is essential for efficient phagocytosis. This is the first evidence that DnaK is required for the efficient phagocytosis of a facultative intracellular pathogen with macrophages.  相似文献   

17.
Alain Picaud 《BBA》1972,275(3):414-426
Relationship of structure, composition and Triton X-100 fractionation of chloroplas lamellae in wild type and two non-photosynthetic mutant strains of Chlamydomonas reinhardti

In order to provide information on the link between the two photosystems studies on the mode of action of Triton X-100 has been carried out on mutants, strains ac 21, Fl 15 and wild type of Chlamydomonas reinhardti. Experiments show that the release of Photosystem I particles from mutant chloroplast fragments needs less Triton X-100 than wild type does and that, compared to wild type, the chloroplast fragments of mutants appear to be deficient in carotenoids (ac 21) or in lipids (Fl 15). It is possible, therefore, to correlate the easier splitting of the mutant membrane by detergent with a decrease in the amount of these compounds (carotenoids and lipids) in mutant strains.

The following interpretation is proposed: (a) some of the carotenoids could be part of the hydrophobic sites on Photosystem I subchloroplast particles; (b) some polar lipids could be linked to these sites; (c) Triton X-100 could, in a competitive way, replace the membrane lipids linked to the hydrophobic sites of subchloroplast particles. It seems probable that anomalies in the mutant behaviour in regard to the Triton X-100 action are related to membrane structural defects in these mutants.  相似文献   


18.
A plant growth-promoting isolate of a fluorescent Pseudomonas spp. EM85 was found strongly antagonistic to Rhizoctonia solani, a causal agent of damping-off of cotton. The isolate produced HCN (HCN+), siderophore (Sid+), fluorescent pigments (Flu+) and antifungal antibiotics (Afa+). Tn5::lacZ mutagenesis of isolate EM85 resulted in the production of a series of mutants with altered production of HCN, siderophore, fluorescent pigments and antifungal antibiotics. Characterisation of these mutants revealed that the fluorescent pigment produced in PDA and the siderophore produced in CAS agar were not the same. Afa- and Flu- mutants had a smaller inhibition zone when grown with Rhizoctonia solani than the EM85 wild type. Sid- and HCN mutants failed to inhibit the pathogen in vitro. In a pot experiment, mutants deficient in HCN and siderophore production could suppress the damping-off disease by 52%. However, mutants deficient in fluorescent pigments and antifungal antibiotics failed to reduce the disease severity. Treatments with mutants that produced enhanced amounts of fluorescent pigments and antibiotics compared with EM85 wild type, exhibited an increase in biocontrol efficiency. Monitoring of the mutants in the rhizosphere using the lacZ marker showed identical proliferation of mutants and wild type. Purified antifungal compounds (fluorescent pigment and antibiotic) also inhibited the fungus appreciably in a TLC bioassay. Thus, the results indicate that fluorescent pigment and antifungal antibiotic of the fluorescent Pseudomonas spp. EM85 might be involved in the biological suppression of Rhizoctonia-induced damping-off of cotton.  相似文献   

19.
Mutant strains of Pseudomonas aeruginosa PAO were isolated on the basis of their inability to utilize mannitol as sole carbon source for growth. Four linkage groups (I through IV) among these mutant strains were resolved by two-factor crosses using the general transducing phage F116, and the strains appeared to contain point mutations as evidenced by ability to give rise to spontaneous revertants with wild phenotype on mannitol minimal agar. Group I strains were affected only in ability to grow on mannitol; all were deficient in inducible mannitol dehydrogenase activity, and all but one were deficient in inducible mannitol transport activity. Fructokinase was induced in group I strains and in wild-type bacteria during growth in the presence of mannitol but not fructose, indicating the presence of a pathway specific for endogenously generated fructose. Cells grown on fructose contained phosphoenolpyruvate:fructose-1-phosphotransferase activity, and mannitol-grown cells contained a lower level of this activity. Group II mutants were deficient in constitutive phosphoglucoisomerase, failed to grow on mannitol, grew very slowly on glycerol and fructose, but grew normally on glucose and gluconate. Group III strains were deficient in both nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase activities that reside in a single enzyme species. 6-Phosphogluconate appeared to be the inductive effector for this enzyme, which was not required for aerobic growth on glucose or gluconate. A single mannitol-negative mutant in group IV also failed to grow on glycerol and glucose, but no biochemical lesion was identified.  相似文献   

20.
Ligand binding to the alpha-subunit of the alpha2beta2 complex of tryptophan synthase induces the alphaloop6 closure over the alpha-active site. This conformational change is associated with the formation of a hydrogen bond between alphaGly181 NH group and betaSer178 carbonyl oxygen, a key event for the triggering of intersubunit allosteric signals. Mutation of betaSer178 to Pro and alphaGly181 to Pro, Ala, Phe and Val abolishes the ligand-induced intersubunit communication. Molecular dynamics methods were applied to simulate the conformation of the highly flexible and crystallographically undetectable open state of alphaloop6 in the wild type and in the alpha181 mutants. The open conformation of alphaloop6 is favoured in the wild type enzyme in the absence of alpha-ligands, and in the alpha181 mutants both in the presence and absence of bound ligands. A very good correlation was found between the extent of limited tryptic proteolysis and both the hydrogen bond distance between alphaX181 and betaSer178, obtained from the molecular dynamics simulation, and the hydrogen bond strength, evaluated by HINT, an empirical force field that takes into account both enthalpic and entropic contributions. Comparison of the open and closed conformations of alphaloop6 suggests a pathway for substrate entrance into the alpha-active site and provides an explanation for the limited catalytic efficiency of the open state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号