首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《遗传》2011,(5):430
与有丝分裂不同,减数分裂染色体复制一次,细胞分裂两次。这种质的差异与染色体臂上及着丝粒处黏着蛋白的分步消失有关。染色体臂上黏着蛋白在减数第一次分裂消失是保证同源染色体分离的前提;而着丝粒处黏着蛋白的维持是保证姊妹染色单体在减数第二次分裂才相互分开。shugoshin是一个着丝粒定位的蛋白,其主要功能是保护姊妹染色单体着丝粒区域黏着蛋白在减数第一次分裂过程中不被降解。shugoshin蛋白在真核生物中具有较高的保守性,上世纪90年代在果蝇中首先发现了shugoshin蛋白(Mei-S332),然而其功能在不同物种中有了进一步分化。  相似文献   

2.
张雨  方玉达 《遗传》2020,(1):57-72
Cohesin是一类在真核生物进化过程中保守的蛋白复合体,由4个重要亚基相互作用形成环状结构,在细胞分裂过程中参与维持染色体的有序排布。在动物中研究发现cohesin还可以作为分子间的连结器介导绝缘子/增强子–启动子间长距离交互,导致基因表达增强或者抑制,但在植物中关于cohesin在调控基因表达和维持染色体构象方面的研究却相对滞后。本文介绍了cohesin的结构特点和主要组成亚基,对调控cohesin在染色质上动态变化的相关因子进行了总结,并结合近年来植物中cohesin的功能研究和动物中cohesin在三维基因组及转录调控中的重要作用,展望了植物中cohesin在转录调控中的潜在功能。  相似文献   

3.
目的:CTCF是广泛存在于真核生物中的多功能转录因子。利用细胞瞬时表达实验在HeLa细胞系中研究CTCF各结构域的转录活性。方法:借用CheckMate哺乳动物双杂交系统的2个质粒pBIND和pG5LUC,将CTCF的N、M、C段及全长编码序列克隆至pBIND质粒的GAL4DNA结合结构域编码序列后的多克隆位点,将表达GAL4DNA结合结构域-CTCF融合蛋白的pBIND重组质粒与由腺病毒晚期主要启动子控制的报告基因质粒pG5LUC共转染HeLa细胞系,检测CTCF各结构域对报告基因表达水平的影响。结果:转染含CTCFN段的质粒可使报告基因的表达量增长至3.5倍以上;转染含CTCF其他片段的质粒对报告基因的表达没有明显的影响。结论:在HeLa细胞中,对启动子具有转录激活活性的主要是CTCF的N段,而M段和C段几乎没有转录激活活性。  相似文献   

4.
明亮 《生命的化学》1996,16(5):17-19
真核生物转录调控中阻遏蛋白的作用机制明亮(杭州大学生命科学学院,杭州310012)关键词转录调控,阻遏蛋白,真核生物真核基因表达在转录水平的调控机制极为复杂。据估计,真核细胞的基因大约有十分之一是用以编码参与转录调控尤其是转录起始调控的蛋白质的。目前...  相似文献   

5.
染色体分离是真核生物正确传递遗传信息的关键。通过对真核模式生物特别是酵母突变体的研究,筛选并克隆出了很多与染色体分离相关的基因,初步揭示了染色体分离的分子机制。染色单体黏着的分子基础是黏连素。黏连素的黏着降解、纺锤体检验点的监控及shugoshin的保护作用在染色体正确分离过程中起着关键的作用。  相似文献   

6.
植物转录因子与基因调控   总被引:13,自引:0,他引:13  
李洁 《生物学通报》2004,39(3):9-11
转录因子是一群DNA结合蛋白,在调控基因表达上起着重要作用。典型的转录因子含有DNA结合区、转录调控区、寡聚化位点及核定位信号区等功能区。有关转录因子结构和功能的研究是植物分子生物学研究的前沿领域,其研究成果对农作物性状的改良具有重要的意义。  相似文献   

7.
Daxx定位细胞核PODs,可在转录调控中行使转录抑制或转录激活双重功能.Daxx通过转位、化学修饰、染色体调节、直接与转录因子或转录相关蛋白相互作用等多种方式发挥转录调控作用.其中,Daxx通过转位,转录后化学修饰,染色体调节,与转录因子或转录相关蛋白相互作用行使转录抑制功能,但相关研究表明Daxx同样可通过与相关因子相互作用激活转录,但具体作用机制尚不清楚.  相似文献   

8.
《遗传》2021,(8)
三维基因组染色质架构蛋白CTCF(CCCTC-bindingfactor)能够介导增强子与基因启动子的远距离染色质相互作用,也可以结合调控区域的绝缘子发挥增强子绝缘功能,对发育中的基因表达调控具有重要作用。同源框基因家族(Homeoboxgenefamily,Hox)编码一类控制动物发育的关键转录因子,在发育中主要沿胚胎首尾轴(head-to-tail axis)呈时空线性表达。在哺乳动物中,Hox基因分为HoxA、HoxB、HoxC和HoxD四个基因簇,在中枢神经系统、骨骼和四肢发育中发挥重要功能。HoxD基因簇主要调控四肢发育,受位于其两侧调控域内的增强子调节,沿肢体近远轴(proximal-distal axis)呈时空线性表达。在人类基因组中,HOXD基因簇及其两侧的调控区域分布有串联排列的CTCF结合位点(简称CTCF位点),参与9个HOXD基因的表达调控。本研究以HOXD基因簇为模式基因,探究CTCF对发育基因(developmentalgenes)转录调控的影响。利用CRISPRDNA片段编辑技术在人HEK293T细胞中获得一系列的串联反向CTCF位点删除的单细胞克隆株。RNA-seq实验揭示CTCF位点删除后HOXD基因表达下降。定量高分辨率染色体构象捕获实验显示,HOXD与上游增强子簇的远距离染色质相互作用增强,与下游增强子簇的远距离染色质相互作用减弱。综上所述,串联反向的CTCF位点通过其绝缘子功能维持上下游增强子簇对HOXD基因簇表达调控的平衡,为探究动物发育过程中Hox基因表达的精准调控机制提供参考。  相似文献   

9.
多功能转录因子CTCF研究进展   总被引:1,自引:0,他引:1  
CTCF是一种多功能的真核转录因子,它可以抑制c—myc基因的表达,增强app基因的启动子活性,调控H19/Igf2的印记,作为鸡β-球蛋白等多个基因结构域的绝缘子成分,以及作为X染色体失活的候选蛋白等。CTCF与BORIS的交互表达和雄性生殖细胞的系统发生有关。CTCF的缺失和突变可能导致肿瘤的发生。  相似文献   

10.
黏结蛋白是一种多亚基的蛋白质复合物,在染色体正确分离和DNA双链断裂修复过程中发挥着重要作用。黏连确立蛋白1(Eco1)是一种乙酰转移酶,可催化多种黏结蛋白亚基的乙酰化。细胞分裂S期姐妹染色单体黏连确立需要Eco1催化的Smc3亚基乙酰化,而G2/M期间DNA双链断裂诱导的黏连形成则需要Scc1乙酰化,两种亚基的乙酰化修饰都拮抗了Wpl1对黏连的抑制作用。Eco1对黏连调节作用的研究为深入理解染色体生物学和基因组完整性保护提供了重要视点。  相似文献   

11.
12.
13.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

14.
15.
16.
17.
The cohesin complex is a central player in sister chromatid cohesion, a process that ensures the faithful segregation of chromosomes in mitosis and meiosis. Previous genetic studies in yeast show that Scc2/Mis4, a HEAT-repeat-containing protein, is required for the loading of cohesin onto chromatin. In this study, we have identified two isoforms of Scc2 in humans and Xenopus (termed Scc2A and Scc2B), which are encoded by a single gene but have different carboxyl termini created by alternative splicing. Both Scc2A and Scc2B bind to chromatin concomitant with cohesin during DNA replication in Xenopus egg extracts. Simultaneous immunodepletion of Scc2A and Scc2B from the extracts impairs the association of cohesin with chromatin, leading to severe defects in sister chromatid pairing in the subsequent mitosis. The loading of Scc2 onto chromatin is inhibited in extracts treated with geminin but not with p21(CIP1), suggesting that this step depends on replication licensing but not on the initiation of DNA replication. Upon mitotic entry, Scc2 is removed from chromatin through a mechanism that requires cdc2 but not aurora B or polo-like kinase. Our results suggest that vertebrate Scc2 couples replication licensing to sister chromatid cohesion by facilitating the loading of cohesin onto chromatin.  相似文献   

18.
The cohesion of replicated sister chromatids promotes chromosome biorientation, gene regulation, DNA repair, and chromosome condensation. Cohesion is mediated by cohesin, which is deposited on chromosomes by a separate conserved loading complex composed of Scc2 and Scc4 in Saccharomyces cerevisiae. Although it is known to be required, the role of Scc2/Scc4 in cohesin deposition remains enigmatic. Scc2 is a phosphoprotein, although the functions of phosphorylation in deposition are unknown. We identified 11 phosphorylated residues in Scc2 by mass spectrometry. Mutants of SCC2 with substitutions that mimic constitutive phosphorylation retain normal Scc2–Scc4 interactions and chromatin association but exhibit decreased viability, sensitivity to genotoxic agents, and decreased stability of the Mcd1 cohesin subunit in mitotic cells. Cohesin association on chromosome arms, but not pericentromeric regions, is reduced in the phosphomimetic mutants but remains above a key threshold, as cohesion is only modestly perturbed. However, these scc2 phosphomimetic mutants exhibit dramatic chromosome condensation defects that are likely responsible for their high inviability. From these data, we conclude that normal Scc2 function requires modulation of its phosphorylation state and suggest that scc2 phosphomimetic mutants cause an increased incidence of abortive cohesin deposition events that result in compromised cohesin complex integrity and Mcd1 turnover.  相似文献   

19.
Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号