首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
F A Saul  R J Poljak 《Proteins》1992,14(3):363-371
The three-dimensional structure of the human immunoglobulin fragment Fab New (IgG1, lambda) has been refined to a crystallographic R-factor of 16.9% to 2 A resolution. Rms deviations of the final model from ideal geometry are 0.014 A for bond distances and 3.03 degrees for bond angles. Refinement was based on a new X-ray data set including 28,301 reflections with F > 2.5 sigma(F) from 6.0 to 2.0 A resolution. The starting model for the refinement procedure reported here is from the Brookhaven Protein Data Bank entry 3FAB (rev. 1981). Differences between the initial and final models include modified polypeptide-chain folding in the third complementarity-determining region (CDR3) and the third framework region (FR3) of VH and in some exposed loops of CL and CH1. Amino acid sequence changes were determined at a number of positions by inspection of difference electron density maps. The incorporation of amino acid sequence changes results in an improved VH framework model for the "humanization" of monoclonal antibodies.  相似文献   

2.
The crystal structure of guanylate kinase from Saccharomyces cerevisiae complexed with its substrate GMP has been refined at a resolution of 2.0 A. The final crystallographic R-factor is 17.3% in the resolution range 7.0 A to 2.0 A for all reflections of the 100% complete data set. The final model has standard geometry with root-mean-square deviations of 0.016 A in bond lengths and 3.0 in bond angles. It consists of all 186 amino acid residues, the N-terminal acetyl group, the substrate GMP, one sulfate ion and 174 water molecules. Guanylate kinase is structurally related to adenylate kinases and G-proteins with respect to its central beta-sheet with connecting helices and the giant anion hole that binds nucleoside triphosphates. These nucleotides are ATP and GTP for the kinases and GTP for the G-proteins. The chain segment binding the substrate GMP of guanylate kinase differs grossly from the respective part of the adenylate kinases; it has no counterpart in the G-proteins. The binding mode of GMP is described in detail. Probably, the observed structure represents one of several structurally quite different intermediate states of the catalytic cycle.  相似文献   

3.
使用X-PLOR及立体化学制约最小二乘精化技术,并结合差值Fourier图人工分析,测定了1.9 分辨率Al修饰丙氨酸胰岛素的晶体结构,晶体空间群为R3,晶胞参数:a=b=80.89,c=37.64。精化后的结构模型最终偏离因子R=0.185,同理想键长和键角的均方根偏差分别为0.018和3.5°,独立区内二个分子的A链N端Al-丙氨酸残基清晰可见。  相似文献   

4.
The crystal structure of the complex between adenylate kinase from bovine mitochondrial matrix and its substrate AMP has been refined at 1.85 A resolution (1 A = 0.1 nm). Based on 42,519 independent reflections of better than 10 A resolution, a final R-factor of 18.9% was obtained with a model obeying standard geometry within 0.016 A in bond lengths and 3.2 degrees in bond angles. There are two enzyme: substrate complexes in the asymmetric unit, each consisting of 226 amino acid residues, one AMP and one sulfate ion. A superposition of the two full-length polypeptides revealed deviations that can be described as small relative movements of three domains. Best superpositions of individual domains yielded a residual overall root-mean-square deviation of 0.3 A for the backbone atoms and 0.5 A for the sidechains. The final model contains 381 solvent molecules in the asymmetric unit, 2 x 72 = 144 of which occupy corresponding positions in both complexes.  相似文献   

5.
空间群为P21的A1-(L-丙氨酸)胰岛素晶胞内,一个不对称单位含有一个六聚体,应用差值Fourier技术,立体化学制最小二来技术和X—PLOR程序并辅以电子密度图的人工拟合,解析了分辨率AI—(L-丙氨酸)胰岛素(Al-L-AlaⅠ)的晶体结构。最终R因子为20.6%,与标准键长与键角的均方根偏差分别为和4.19°,从电子密度图与模型的拟合来看,六聚体中每条A链的Al位置替换的L—Ala清晰可见,每条B链N端B1—B8伏段都为α螺旋构象,形成了B1—B19的连续α螺旋段。  相似文献   

6.
Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution   总被引:12,自引:0,他引:12  
The crystal structure of porcine cytosolic adenylate kinase has been established at 2.1 A resolution using a restrained least-squares refinement method. Based on 11,251 independent reflections of better than 10 A resolution, a final R-factor of 19.3% was obtained with a model obeying standard geometry within 0.026 A in bond lengths and 3.3 degrees in bond angles. In comparison with the previous structure at 3 A resolution, there is a significant improvement. The high resolution structure has been used to rationalize the strictly conserved residues in the adenylate kinase family. Among these is the glycine-rich loop, which forms a giant anion hole accommodating a sulfate ion which mimics a phosphoryl group of a substrate. Such a structure seems to occur in a large group of mononucleotide binding proteins. Moreover, a conserved cis-proline has been detected in the active center. A structural comparison with the complex between adenylate kinase from yeast and a substrate-analog at medium resolution indicates that this kinase performs appreciable mechanical movements during a catalytic cycle. The reported structure presumably represents an open form of the enzyme, similar to that in solution in the absence of substrates. However, since there are large intermolecular contacts in the crystal, some deviation from the solution structure has to be expected.  相似文献   

7.
The crystal structure of pea lectin at 3.0-A resolution   总被引:7,自引:0,他引:7  
The structure of pea lectin has been determined to 3.0-A resolution based on multiple isomorphous replacement phasing to 6.0-A resolution and a combination of single isomorphous replacement, anomalous scattering, and density modification to 3.0-A resolution. The pea lectin model has been optimized by restrained least squares refinement against the data between 7.0- and 3.0-A resolution. The final model at 3.0 A gives an R factor of 0.24 and a root mean square deviation from ideal bond distances of 0.02 A. The two monomers in the asymmetric unit are related by noncrystallographic 2-fold symmetry to form a dimer. Monomers were treated independently in modeling and refinement, but are found to be virtually identical at this resolution. The molecular structure of the pea lectin monomer is very similar to that of concanavalin A, the lectin from the jack bean. Similarities extend from secondary and tertiary structures to the occurrence of a cis-peptide bond and the pattern of coordination of the Ca2+ and Mn2+ ions. Differences between the two lectin structures are confined primarily to the loop regions and to the chain termini, which are different and give rise to the unusual permuted relationship between the pea lectin and concanavalin A protein sequences.  相似文献   

8.
Refined structure of spinach glycolate oxidase at 2 A resolution   总被引:11,自引:0,他引:11  
The amino acid sequence of glycolate oxidase from spinach has been fitted to an electron density map of 2.0 A nominal resolution and the structure has been refined using the restrained parameter least-squares refinement of Hendrickson and Konnert. A final crystallographic R-factor of 18.9% was obtained for 32,888 independent reflections from 5.5 to 2 A resolution. The geometry of the model, consisting of 350 amino acid residues, the cofactor flavin mononucleotide and 298 solvent molecules, is close to ideal with root-mean-square deviations of 0.015 A in bond lengths and 2.6 degrees in bond angles. The expected trimodal distribution with preference for staggered conformation is obtained for the side-chain chi 1-angles. The core of the subunit is built up from the eight beta-strands in the beta/alpha-barrel. This core consists of two hydrophobic layers. One in the center is made up of residues pointing in from the beta-strands towards the barrel axis and the second, consisting of two segments of residues, pointing out from the beta-strands towards the eight alpha-helices of the barrel and pointing from the helices towards the strands. The hydrogen bond pattern for the beta-strands in the beta/alpha-barrel is described. There are a number of residues with 3(10)-helix conformation, in particular there is one left-handed helix. The ordered solvent molecules are organized mainly in clusters. The average isotropic temperature factor is quite high, 27.1 A2, perhaps a reflection of the high solvent content in the crystal. The octameric glycolate oxidase molecule, which has 422 symmetry, makes strong interactions around the 4-fold axis forming a tight tetramer, but only weak interactions between the two tetramers forming the octamer.  相似文献   

9.
Refined crystal structure of carboxypeptidase A at 1.54 A resolution   总被引:19,自引:0,他引:19  
The crystal structure of bovine carboxypeptidase A (Cox) has been refined at 1.54 A resolution using the restrained least-squares algorithm of Hendrickson & Konnert (1981). The crystallographic R factor (formula; see text) for structure factors calculated from the final model is 0.190. Bond lengths and bond angles in the carboxypeptidase A model have root-mean-square deviations from ideal values of 0.025 A and 3.6 degrees, respectively. Four examples of a reverse turn like structure (the "Asx" turn) requiring an aspartic acid or asparagine residue are observed in this structure. The Asx turn has the same number of atoms as a reverse turn, but only one peptide bond, and the hydrogen bond that closes the turn is between the Asx side-chain CO group and a main-chain NH group. The distributions of CO-N and NH-O hydrogen bond angles in the alpha-helices and beta-sheet structures of carboxypeptidase A are centered about 156 degrees. A total of 192 water molecules per molecule of enzyme are included in the final model. Unlike the hydrogen bonding geometry observed in the secondary structure of the enzyme, the CO-O(wat) hydrogen bond angle is distributed about 131 degrees, indicating the role of the lone pair electrons of the carbonyl oxygen in the hydrogen bond interaction. Twenty four solvent molecules are observed buried within the protein. Several of these waters are organized into hydrogen-bonded chains containing up to five waters. The average temperature factor for atoms in carboxypeptidase A is 8 A2, and varies from 5 A2 in the center of the protein, to over 30 A2 at the surface.  相似文献   

10.
The pyridoxal 5'-phosphate (PLP)-dependent enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) catalyzes a reaction that involves a ring opening of cyclopropanoid amino acid, yielding alpha-ketobutyrate and ammonia. Unlike other PLP-dependent enzymes, this enzyme has no alpha-hydrogen atom in the substrate. Thus, a unique mechanism for the bond cleavage is expected. The crystal structure of ACCD from Hansenula saturnus has been determined at 2.0 A resolution by the multiple wavelength anomalous diffraction method using mercury atoms as anomalous scatterers. The model was built on the electron density map, which was obtained by the density averaging of multiple crystal forms. The final model was refined to an R-factor of 22.5% and an R(free)-factor of 26.8%. The ACCD folds into two domains, each of which has an open twisted alpha/beta structure similar to the beta-subunit of tryptophan synthase. However, in ACCD, unlike in other members of the beta family of PLP-dependent enzymes, PLP is buried deep in the molecule. The structure provides the first view of the catalytic center of the cyclopropane ring opening.  相似文献   

11.
The refined crystal structure of ribonuclease A at 2.0 A resolution   总被引:13,自引:0,他引:13  
This paper describes the structure of bovine pancreatic ribonuclease A, refined by a restrained parameter least squares procedure at 2.0 A resolution, and rebuilt using computer graphics. The final agreement factor (formula see text) is 0.159. The positions of the 951 main chain atoms have been determined with an estimated accuracy of 0.17 A. In addition, the model includes a phosphate group in the active site and 176 waters, many of them with partial occupancy. The bond lengths in the refined structure of RNase A differ from the ideal values by an overall root mean square deviation of 0.022 A; the corresponding value for angle distances is 0.06 A. The root mean square deviation of planar atoms from ideality is 0.017 A, and root mean square deviation of the peptide torsion angles from 180 degrees is 3.4 degrees. The model is in good agreement with the final difference Fourier maps. Two active site histidines, His 12 and His 119, form hydrogen bonds to the phosphate ion. His 119 is also hydrogen bonded to the carboxyl of ASp 121 and His 12 to the carbonyl of Thr 45. The structure of the RNase A is very similar to that of RNase S, particularly in the active site region. The root mean square discrepancy of all atoms from residues 1 to 16 and 24 to 123 is 1.06 A and the root mean square discrepancy for the active site region is 0.6 A.  相似文献   

12.
N-carbamoylsarcosine amidohydrolase from Arthrobacter sp., a tetramer of polypeptides with 264 amino acid residues each, has been crystallized and its structure solved and refined at 2.0 A resolution, to a crystallographic R-factor of 18.6%. The crystals employed in the analysis contain one tetramer of 116,000 M(r) in the asymmetric unit. The structure determination proceeded by multiple isomorphous replacement, followed by solvent-flattening and density averaging about the local diads within the tetramer. In the final refined model, the root-mean-square deviation from ideality is 0.01 A for bond distances and 2.7 degrees for bond angles. The asymmetric unit consists of 7853 protein atoms, 431 water molecules and four sulfate ions bound into the putative active site clefts in each subunit. One subunit contains a central six-stranded parallel beta-pleated sheet packed by helices on both sides. On one side, two helices face the solvent, while two of the helices on the other side are buried in the tight intersubunit contacts. The catalytic center of the enzyme, tentatively identified by inhibitor binding, is located at the interface between two subunits and involves residues from both. It is suggested that the nucleophilic group involved in hydrolysis of the substrate is the thiol group of Cys117 and a nucleophilic addition-elimination mechanism is proposed.  相似文献   

13.
The crystal structure of a sarcoplasmic Ca(2+)-binding protein (SCP) from the sandworm Nereis diversicolor has been determined and refined at 2.0 A resolution using restrained least-squares techniques. The two molecules in the crystallographic asymmetric unit, which are related by a non-crystallographic 2-fold axis, were refined independently. The refined model includes all 174 residues and three calcium ions for each molecule, as well as 213 water molecules. The root-mean-square difference in co-ordinates for backbone atoms and calcium ions of the two molecules is 0.51 A. The final crystallographic R-factor, based on 18,959 reflections in the range 2.0 A less than or equal to d less than or equal to 7.0 A, with intensities exceeding 2.0 sigma, is 0.182. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.013 A and 2.2 degrees, respectively. SCP has four distinct domains with the typical helix-loop-helix (EF-hand) Ca(2+)-binding motif, although the second Ca(2+)-binding domain is not functional due to amino acid changes in the loop. The structure shows several unique features compared to other Ca(2+)-binding proteins with four EF-hand domains. The overall structure is highly compact and globular with a predominant hydrophobic core, unlike the extended dumbbell-shaped structure of calmodulin or troponin C. A hydrophobic tail at the COOH terminus adds to the structural stability by packing against a hydrophobic pocket created by the folding of the NH2 and COOH-terminal Ca(2+)-binding domain pairs. The first and second domains show different helix-packing arrangements from any previously described for Ca(2+)-binding proteins.  相似文献   

14.
The crystal structure of NADH peroxidase (EC 1.11.1.1) from Streptococcus faecalis 10C1 (Enterococcus faecalis) has been refined to a resolution of 2.16 A using the simulated annealing method. The final crystallographic R-factor is 17.7% for all data in the resolution range 7 to 2.16 A. The standard deviations are 0.015 A in bond lengths and 3.0 degrees in bond angles for the final model, which includes all 447 amino acid residues, one FAD and 369 water molecules. The enzyme is a symmetrical tetramer with point group D2; the symmetry is crystallographic. The redox center of the enzyme consists of FAD and a cysteine (Cys42), which forms a sulfenic acid (Cys-SOH) in its oxidized state. A histidine (His10) close to Cys42 is likely to act as an active-site base. In the analyzed crystal, the enzyme was in a non-native oxidation state with Cys42 oxidized to a sulfonic acid Cys-SO3H. The chain fold of NADH peroxidase is similar to those of disulfide oxidoreductases. A comparison with glutathione reductase, a representative of this enzyme family, is given.  相似文献   

15.
Alignment of homologous amino acid sequences reveals that insertion mutations are fairly common in evolution. Hitherto, the structural consequences of insertion mutations on the surface and in the interior of proteins of known structures have received little attention. We report here the high-resolution X-ray crystal structures of 2 site-directed insertion mutants of staphylococcal nuclease. The structure of the first insertion mutant, in which 2 glycine residues were inserted on the protein surface in the amino-terminal beta-strand, has been solved to 1.70 A resolution and refined to a crystallographic R value of 0.182. The inserted residues are accommodated in a special 3-residue beta-bulge. A bridging water molecule in the newly created cavity satisfies the hydrogen bonding requirements of the beta-sheet by forming a bifurcated hydrogen bond to 1 beta-strand, and a single hydrogen bond to the other beta-strand. The second insertion mutant contains a single leucine residue inserted at the end of the third beta-strand. The structure was solved to 2.0 A resolution and refined to a final R value of 0.196. The insertion is accommodated in a register shift that changes the conformation of the flexible loop portion of the molecule, relaxing and widening the omega turn. This structural alteration results in changes in position and coordination of a bound calcium ion important for catalysis. These structures illustrate important differences in how amino acid insertions are accommodated: as localized bulges, and as extensive register shifts.  相似文献   

16.
The X-ray crystal structure of the carboxypeptidase A-L-benzylsuccinate complex has been refined at 2.0 A resolution to a final R-factor of 0.166. One molecule of the inhibitor binds to the enzyme active site. The terminal carboxylate forms a salt link with the guanidinium group of Arg145 and hydrogen bonds with Tyr248 and Asn144. The second carboxylate group binds to the zinc ion in an asymmetric bidentate fashion replacing the water molecule of the native structure. The zinc ion moves 0.5 A from its position in the native structure to accommodate the inhibitor binding. The overall stereochemistry around the zinc can be considered a distorted tetrahedron, although six atoms of the co-ordinated groups lie within 3.0 A from the zinc ion. The key for the strong inhibitory properties of L-benzylsuccinate can be found in its ability both to co-ordinate the zinc and to form a short carboxyl-carboxylate-type hydrogen bond (2.5 A) with Glu270.  相似文献   

17.
The crystal structure of a double-headed alpha-chymotrypsin inhibitor, WCI, from winged bean seeds has now been refined at 2.3 A resolution to an R-factor of 18.7% for 9,897 reflections. The crystals belong to the hexagonal space group P6(1)22 with cell parameters a = b = 61.8 A and c = 212.8 A. The final model has a good stereochemistry and a root mean square deviation of 0.011 A and 1.14 degrees from ideality for bond length and bond angles, respectively. A total of 109 ordered solvent molecules were localized in the structure. This improved structure at 2.3 A led to an understanding of the mechanism of inhibition of the protein against alpha-chymotrypsin. An analysis of this higher resolution structure also helped us to predict the location of the second reactive site of the protein, about which no previous biochemical information was available. The inhibitor structure is spherical and has twelve anti-parallel beta-strands with connecting loops arranged in a characteristic beta-trefoil fold common to other homologous serine protease inhibitors in the Kunitz (STI) family as well as to some non homologous functionally unrelated proteins. A wide variation in the surface loop regions is seen in the latter ones.  相似文献   

18.
BmK M4 is a neutral neurotoxin in the BmK toxin series.It is medially toxic and belongs to group III α-toxins.The purified sample was crystallized in rhombic space group P61.Using an X-ray diffraction technique,the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution.The model was refined.The final crystallographic R factor was 0.142 and the free R factor was 0.173.The root mean square deviation is 0.001 5 nm for the bond length and 1.753°for the bond angles.64 water molecules were added to the asymmetric unit.The refined structure showed an unusual non-prolyl cis peptide bond at residue 10.The structure was compared with group II α-toxin BmK M8 (an acidic,weak toxin).The potential structural implications of the cis peptide bond were discussed.  相似文献   

19.
Crystal structure of human alpha-lactalbumin at 1.7 A resolution   总被引:7,自引:0,他引:7  
The three-dimensional X-ray structure of human alpha-lactalbumin, an important component of milk, has been determined at 1.7 A (0.17 nm) resolution by the method of molecular replacement, using the refined structure of baboon alpha-lactalbumin as the model structure. The two proteins are known to have more than 90% amino acid sequence identity and crystallize in the same orthorhombic space group, P2(1)2(1)2. The crystallographic refinement of the structure using the simulated annealing method, resulted in a crystallographic R-factor of 0.209 for the 11,373 observed reflections (F greater than or equal to 2 sigma (F)) between 8 and 1.7 A resolution. The model comprises 983 protein atoms, 90 solvent atoms and a bound calcium ion. In the final model, the root-mean-square deviations from ideality are 0.013 A for covalent bond distances and 2.9 degrees for bond angles. Superposition of the human and baboon alpha-lactalbumin structures yields a root-mean-square difference of 0.67 A for the 123 structurally equivalent C alpha atoms. The C terminus is flexible in the human alpha-lactalbumin molecule. The striking structural resemblance between alpha-lactalbumins and C-type lysozymes emphasizes the homologous evolutionary relationship between these two classes of proteins.  相似文献   

20.
气相扩散共晶生长法培养出P.versicolor龙虾肌ATP-D-甘油醛-3-磷酸脱氢酶(ATP-GAPDH)的晶体。用同步辐射X光源-磷光储屏-Weissenberg照相机系统收集了一套2.0分辨率的衍射数据。用同晶差值傅立叶法解析了其结构。精化后的结构模型最终R因子为0.197,与标准键长、键角的均方根偏差为0.016°和3.20°。PvATP-GAPDH结构总体上和Pvapo-GAPDH相似。ATP分子的占有率较低,并表现出一定程度的无序性,提示ATP与酶蛋白结合的稳定性较低,表明NAD+的尼克酰胺核苷部分与蛋白质分子的作用在辅酶与蛋白质的稳定结合中起关键作用。ATP-GAPDH中每个亚基只有一个磷酸结合位点(Pi)。认为无机磷酸结合位点Pi的形成不依赖于NAD+,而底物磷酸结合位点PS的形成则依赖于NAD+的存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号