首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Li Q  Jin X  Zhu YX 《遗传学报》2012,39(7):351-360
The plant genome possesses a large number of microRNAs(miRNAs)mainly 21-24 nucleotides in length.They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle.Here we sequenced and analyzed~10 million non-coding RNAs(ncRNAs)derived from fiber tissue of the allotetraploid cotton(Gossypium hirsutum)1 days post-anthesis using ncRNA-seq technology.In terms of distinct reads,24 nt ncRNA is by far the dominant species,followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction,we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D5 genome of the diploid cotton G.raimondii.Of all the 562 predicted miRNAs,22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species.Nucleotide bias analysis showed that the 9th and 1 st positions were significantly conserved among different types of miRNA genes.Among the 463 putative miRNA target genes,most significant up/down-regulation occurred in 10-20 days post-anthesis,indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development.The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.  相似文献   

2.
Barozai MY 《Gene》2012,499(1):163-168
  相似文献   

3.
New human and mouse microRNA genes found by homology search   总被引:2,自引:0,他引:2  
Weber MJ 《The FEBS journal》2005,272(1):59-73
  相似文献   

4.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that down-regulate gene expression in a sequence specific manner to control plant growth and development. The identification and characterization of miRNAs are critical steps in finding their target genes and elucidating their functions. The objective of the present study was to assess the genetic variation of miRNA genes through expression comparisons and miRNA-based AFLP marker analysis. Seven miRNAs were first selected for RT-PCR and four for quantitative RT-PCR analysis that showed considerably high or differential expression levels in early stages of boll development. Except for miR160a, differential gene expression of miR171, 390a, and 396a was detected in early developing bolls at one or more timepoints between two cultivated cotton cultivars, Pima Phy 76 (Gossypium barbadense) and Acala 1517-99 (Gossypium hirsutum). Our further work demonstrated that genetic diversity of miRNA genes can be assessed by miRNA-AFLP analysis using primers designed from 22 conserved miRNA genes in combination with AFLP primers. Homologous miRNA genes can be also identified and isolated for sequencing and confirmation using this homology-based genotyping approach. This strategy offers an alternative to isolating a full length of miRNA genes and their up-stream and down-stream sequences. The significance of the expression and sequence differences of miRNAs between cotton species or genotypes needs further studies.  相似文献   

5.
6.
7.
Wang M  Wang Q  Wang B 《PloS one》2012,7(4):e33696
To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.  相似文献   

8.
MicroRNA(miRNA)是真核生物中具有重要调控作用的小分子非编码RNA。本文对miRNA官网miRBase数据库Release 22.1中隶属于植物界的绿藻门、苔藓植物门、蕨类植物门、裸子植物门、被子植物门共计82个物种的miRNA进行了统计分析。miRBase共收录植物miRNA 前体8 615个,成熟miRNA 10 414条,隶属于2 892个miRNA家族。绿藻门miRNA与其他4个门miRNA无同源性;对其他4个门植物miRNA的保守性进行研究,发现存在于2个植物门的miRNA家族有26个,属于中度保守miRNA家族;14个miRNA家族存在于3个及3个以上植物门中,属于高度保守miRNA家族,其中7个miRNA家族系苔藓、蕨类、裸子和被子植物共有,是植物中最保守的miRNA。分析表明,超过30个miRNA家族的植物有35种。进一步对40个中度或者高度保守miRNA在35种植物中的分布进行研究,发现miRNA家族及其成员在物种间的分布存在较大的差异。这些分布上的差异一方面反映不同植物中miRNA的研究深度不同,另一方面也反映出miRNA在植物进化过程中的适应性调整。研究不同植物中miRNA家族的分布,可在miRNA水平为植物早期进化同源性的研究提供分子依据。  相似文献   

9.
10.
MicroRNA(miRNA)是真核生物中具有重要调控作用的小分子非编码RNA。本文对miRNA官网miRBase数据库Release 22.1中隶属于植物界的绿藻门、苔藓植物门、蕨类植物门、裸子植物门、被子植物门共计82个物种的miRNA进行了统计分析。miRBase共收录植物miRNA 前体8 615个,成熟miRNA 10 414条,隶属于2 892个miRNA家族。绿藻门miRNA与其他4个门miRNA无同源性;对其他4个门植物miRNA的保守性进行研究,发现存在于2个植物门的miRNA家族有26个,属于中度保守miRNA家族;14个miRNA家族存在于3个及3个以上植物门中,属于高度保守miRNA家族,其中7个miRNA家族系苔藓、蕨类、裸子和被子植物共有,是植物中最保守的miRNA。分析表明,超过30个miRNA家族的植物有35种。进一步对40个中度或者高度保守miRNA在35种植物中的分布进行研究,发现miRNA家族及其成员在物种间的分布存在较大的差异。这些分布上的差异一方面反映不同植物中miRNA的研究深度不同,另一方面也反映出miRNA在植物进化过程中的适应性调整。研究不同植物中miRNA家族的分布,可在miRNA水平为植物早期进化同源性的研究提供分子依据。  相似文献   

11.
12.
13.
MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.  相似文献   

14.
15.
16.
17.
18.
MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants, miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidopsis and 40 in O. sativa, providing a relatively complete enumeration of family members for these miRNAs in plants. In addition, a greater number of Arabidopsis miRNAs (MIR168, MIR159 and MIR172) were found to be conserved in rice. With the novel homologs, most of the miRNAs have closely related fellow miRNAs and the number of paralogs varies in the different miRNA families. Moreover, a probable functional segment highly conserved on the elongated stem of pre-miRNA fold-backs of MIR319 and MIR159 family was identified. These results support a model of variegated miRNA regulation in plants, in which miRNAs with different functional elements on their pre-miRNA fold-backs can differ in their function or regulation, and closely related miRNAs can be diverse in their specificity or competence to downregulate target genes. It appears that the sophisticated regulation of miRNAs can achieve complex biological effects through qualitative and quantitative modulation of gene expression profiles in plants.  相似文献   

19.
20.
Identification of cotton microRNAs and their targets   总被引:10,自引:0,他引:10  
Zhang B  Wang Q  Wang K  Pan X  Liu F  Guo T  Cobb GP  Anderson TA 《Gene》2007,397(1-2):26-37
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号