首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furosemide-inhibitable components in unidirectional cation fluxes have been identified in frog skeletal muscle. In sodium loaded muscles, placed in sodium-free rubidium lithium media, furosemide (1 mM) inhibits partially rubidium and lithium influxes as well as potassium and sodium outfluxes. The furosemide-inhibitable components were found to depend on the presence of ouabain. They were greatly diminished in sodium-free magnesium media and were present in chloride-free nitrate containing media. The dependence of furosemide-inhibitable sodium efflux on internal sodium content was also described.  相似文献   

2.
Determination of ionic calcium in frog skeletal muscle fibers   总被引:3,自引:0,他引:3       下载免费PDF全文
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM).  相似文献   

3.
Imaging of calcium transients in skeletal muscle fibers.   总被引:2,自引:0,他引:2       下载免费PDF全文
Epifluorescence images of Ca2+ transients elicited by electrical stimulation of single skeletal muscle fibers were studied with fast imaging techniques that take advantage of the large fluorescence signals emitted at relatively long wavelengths by the dyes fluo-3 and rhod-2 in response to binding of Ca2+ ions, and of the suitable features of a commercially available CCD video camera. The localized release of Ca2+ in response to microinjection of InsP3 was also monitored to demonstrate the adequate space and time resolutions of the imaging system. The time resolution of the imager system, although limited to the standard video frequency response, still proved to be adequate to investigate the fast Ca2+ release process in skeletal muscle fibers at low temperatures.  相似文献   

4.
The tightly bound nucleotides of the beef-heart mitochondrial ATPase are released during cold inactivation followed by ammonium sulfate precipitation. During incubation at 0°C the sedimentation coefficient (s20 W) of the ATPase first declines from 12.1 S to 9 S. Prolonged incubation or precipitation with ammonium sulfate leads to dissociation of the 9 S component into subunits with s20 W of 3.5 S. The 9 S component still bears bound nucleotides which exchange more extensively and rapidly with added nucleotides than those bound to the active 12.1 S component. The bound nucleotides are lost when the 9 S form dissociates into the smaller subunits. Thus, firm binding of nucleotides is a property of the quarternary structure of the enzyme. The exchangeability of the nucleotides bound to the ATPase of chloroplast membranes is greatly increased in membranes illuminated in the presence of pyocyanine. Pi can exchange into both the β and γ positions of the bound nucleotides when the membranes are energized in the presence of Mg2+. The exchange of the nucleotides and the incorporation of Pi are insensitive to the inhibitor Dio-9 but are inhibited by the uncoupler S13.
  • 1 Abbreviation: S13, 5-chloro-3-t-butyl-2′-chloro-4′nitrosalicylanilide.
  • This inhibition by S13 parallels that of the inhibition of photosynthetic phosphorylation. These findings are discussed with regard to our hypothesis that electron transfer causes release of preformed tightly bound ATP from the ATPase by inducing a conformational change.  相似文献   

    5.
    Sarcolemmal vesicles with right-side-out configuration were prepared from normal fresh human and rabbit skeletal muscle bundles by incubation in 140 mM KCl solution containing collagenase. The vesicles were used to examine the association of dystrophin, the protein product of the Duchenne muscular dystrophy gene, with the sarcolemma. Western blot analysis, indirect immunofluorescence, and immunoperoxidase staining using specific antibodies raised against the N-terminal and the C-terminal domains show that dystrophin remains associated with the membrane of sarcolemmal vesicles. Indirect immunofluorescence microscopy using permeabilized and unpermeabilized vesicles indicated that both the N-terminus and the C-terminus of dystrophin are localized to the cytoplasmic surface of the sarcolemma. These results suggest that dystrophin has much stronger attachment to the surface membrane than it has to the internal domain of skeletal muscle fibers. Sarcolemmal vesicles thus represent a new system for studying the function of dystrophin and the molecular basis of its association with the sarcolemma.  相似文献   

    6.
    Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
    The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

    7.
    Biosynthesis of titin in cultured skeletal muscle cells   总被引:7,自引:1,他引:7       下载免费PDF全文
    Although significant progress has been made regarding the structure and function of titin, little data exist on the biosynthesis of this large protein in developing muscle. Using pulse-labeling with [35S]methionine and immunoprecipitation with an anti-titin mAb, we have examined the biosynthesis of titin in synchronized cultures of skeletal muscle cells derived from day 12 chicken embryos. We find that: (a) titin synthesis increases greater than 4-fold during the first week in culture and during this same time period, synthesis of muscle-specific myosin heavy chain increases greater than 12-fold; (b) newly synthesized titin has a t1/2 of approximately 70 h; (c) titin is resistant to extraction with Triton X-100 both during and immediately after its synthesis. These observations suggest that newly synthesized titin molecules are stable proteins that rapidly associate with the cytoskeleton of developing myotubes.  相似文献   

    8.
    9.
    The metabolic turnover in the isolated in vitro perfused and superfused rat skeletal muscle (musculus gracilis cranialis) was enhanced by increasing the medium flow rate under relaxed conditions. In a recent study we have measured the tissue concentrations of second messengers: cyclic adenosine 3'5'-monophosphate (cAMP), cyclic guanosine 3'5'-monophosphate (cGMP), and D-myo-inositol 1,4,5-trisphosphate (IP3) under similar experimental conditions to analyze their potential role in the described stimulation of metabolic rate by changes of perfusion flow rate. The tissue levels of the two second messengers' cAMP and cGMP were not significantly changed after increasing the perfusion flow rate and they probably have no transduction role in the induced alteration of skeletal muscle metabolism. However, the IP3 content was extremely reduced after increasing flow rate. This decrease in the tissue concentration of IP3 induced by increasing the flow rate indicates the possible role of IP3 in this signal transduction, leading to changes in the cellular metabolic pathways.  相似文献   

    10.
    Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
    Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

    11.
    Time course of calcium release and removal in skeletal muscle fibers.   总被引:13,自引:3,他引:13       下载免费PDF全文
    The transient increase in free myoplasmic calcium concentration due to depolarization of a skeletal muscle fiber is the net result of the release of calcium from the sarcoplasmic reticulum (SR) and its simultaneous removal by binding to various sites and by reuptake into the SR. We present a procedure for empirically characterizing the calcium removal processes in voltage-clamped fibers and for using such characterization to determine the time course of SR calcium release during a depolarizing pulse. Our results reveal a decline of the SR calcium release rate during depolarization that was not anticipated from simple inspection of the calcium transients.  相似文献   

    12.
    Franklin Fuchs  Charles Fox 《BBA》1982,679(1):110-115
    A simple double-isotope procedure has been developed for making simultaneous measurements of bound Ca2+ and relative force in glycerinated rabbit psoas bundles containing two fibers. With this preparation it is possible to study Ca2+-troponin interactions coincident with MgATP-induced force development. Over the free [Ca2+] range 6 · 10?8–1.2 · 10?5 M the bound Ca2+ varied from 0.25 to 1.65 μmol/g protein. The free [Ca2+] at half-maximal Ca2+ saturation was 2 · 10?7 M while that a half-maximal force was 5 · 10?7 M. Half-maximal Ca2+ saturation was associated with 20% maximal force. The force-[Ca2+] saturation curve showed a steep rise in slope at greater than half saturation. The observed relationship was consistent with a model in which multiple occupancy of troponin Ca2+-binding sites is essential for initiation of cross-bridge cycling.  相似文献   

    13.
    Major questions in excitation--contraction coupling of fast skeletal muscle concern the mechanism of signal transmission between sarcolemma and sarcoplasmic reticulum (SR), the mechanism of SR Ca release, and operation of the SR active transport system during excitation. Intracellular Ca movement can be studied in skinned muscle fibers with more direct control, analysis of 45Ca flux, and simultaneous isometric force measurements. Ca release can be stimulated by bath Ca2+ itself, ionic "depolarization," Mg2+ reduction, or caffeine. The effectiveness of bath Ca2+ has suggested a possible role for Ca2+ in physiological release, but this response is difficult to analyze and evaluate. Related evidence emerged from analysis of other responses: with all agents studied, stimulation of 45Ca efflux is highly Ca2+-dependent. The presence of a Ca chelator prevents detectable stimulation by ionic "depolarization" or Mg2+ reduction and inhibits the potent caffeine stimulus; inhibition is graded with chelator concentration and caffeine concentration, and is synergistic with inhibition by increased Mg2+. The results indicate that a Ca2+-dependent pathway mediates most or all of stimulated 45Ca efflux in skinned fibers, and has properties compatible with a function in physiological Ca release.  相似文献   

    14.
    The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.  相似文献   

    15.
    The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

    16.
    Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

    17.
    The role of store-operated calcium influx in skeletal muscle signaling   总被引:1,自引:0,他引:1  
    In cardiac and skeletal muscle Ca(2+) release from intracellular stores triggers actomyosin cross-bridge formation and the generation of contractile force. In the face of large fluctuations of intracellular calcium ([Ca(2+)](i)) that occur with contractile activity, myocytes are able to sense and respond to changes in workload and patterns of activation through calcium signaling pathways which modulate gene expression and cellular metabolism. Store-operated calcium influx has emerged as a mechanism by which calcium signaling pathways are activated in order to respond to the changing demands of the myocyte. Abnormalities of store-operated calcium influx may contribute to maladaptive muscle remodeling in multiple disease states. The importance of store-operated calcium influx in muscle is confirmed in mice lacking STIM1 which die perinatally and in patients with mutations on STIM1 or Orai1 who exhibit a myopathy exhibited by hypotonia. In this review, we consider the role of store-operated Ca(2+) entry into skeletal muscle as a critical mediator of Ca(2+) dependent gene expression and how alterations in Ca(2+) influx may influence muscle development and disease.  相似文献   

    18.
    The metallochrome calcium indicators arsenazo III and antipyrylazo III have been introduced individually into cut single frog skeletal muscle fibers from which calcium transients have been elicited either by action potential stimulation or by voltage-clamp pulses of up to 50 ms in duration. Calcium transients recorded with both dyes at selected wavelengths have similar characteristics when elicited by action potentials. Longer voltage-clamp pulse stimulation reveals differences in the late phases of the optical signals obtained with the two dyes. The effects of different tension blocking methods on Ca transients were compared experimentally. Internal application of EGTA at concentrations up to 3 mM was demonstrated to be efficient in blocking movement artifacts without affecting Ca transients. Higher EGTA concentrations affect the Ca signals' characteristics. Differential effects of internally applied EGTA on tension development as opposed to calcium transients suggest that diffusion with binding from Ca++ release sites to filament overlap sites may be significant. The spectral characteristics of the absorbance transients recorded with arsenazo III suggest that in situ recorded signals cannot be easily interpreted in terms of Ca concentration changes. A more exhaustic knowledge of the dye chemistry and/or in situ complications in the use of the dye will be necessary.  相似文献   

    19.
    The evidence that calcium (Ca) plays an important role in electrical activity and an essential role in excitation--contraction (E--C) coupling in crustacean muscles is reviewed. These muscles produce graded electrical and mechanical responses to applied depolarizations. Removal of Ca from the bath solution eliminates both responses. Addition of Ba2+ or Sr2+ to Ca-free saline restores membrane electrogenesis, and all-or-none action potentials can be induced. With Sr2+ vigorous contractions are produced, whereas Ba action potentials evoke minimal or no tension, showing that rapid depolarization of the membrane potential is not sufficient per se for E--C coupling in crab and barnacle muscle. Several inorganic (e.g., multivalent cations) and organic (e.g., aminoglycoside antibiotics) which block membrane Ca channels block electrogenesis and contraction. However, the "Ca antagonists" verapamil and D600 also block Ca uptake at intracellular storage sites, resulting in spontaneous contractions and the delayed relaxation of small contractions associated with residual Ca currents. The evidence that the Ca which enters the fibres needs to release Ca from intracellular storage sites to produce contractions is detailed and discussed. Finally, a model for E--C coupling is discussed. This model includes the sites and mechanisms of action for several chemicals which modify E--C coupling in crustacean muscle fibres.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号