首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have examined the molecular structure of the human alpha globin gene complex from individuals with a common form of alpha thalassaemia in which one of the duplicated pair of alpha genes (alpha alpha) has been deleted (-alpha 3-7). Restriction mapping and DNA sequence analysis of the mutants indicate that different -alpha 3.7 chromosomes are the result of at least three independent events. In each case the genetic crossover has occurred within a region of complete homology between the alpha 1 and alpha 2 genes. Since the -alpha chromosomes may reflect the processes of crossover fixation and gene conversion between the two genes, their structures may provide some insight into the mechanism by which the concerted evolution of the human alpha globin genes occurs.  相似文献   

3.
A new key-string segmentation algorithm for identification of alpha satellite DNAs and higher-order repeat (HOR) units was introduced and exemplified. Starting with an initial key string, we determine the dominant key string and HOR. Our key-string algorithm was used to scan the recent GenBank data for human alpha satellite DNA sequence AC017075.8 (193 277 bp) from the centromeric region of chromosome 7. The sequence was computationally segmented into one HOR domain (super-repeat domain) and two non-HOR domains. Dominant key-string GTTTCT provided segmentation in terms of alpha monomers. The HOR is tandemly repeated in 54 copies in the super-repeat (HOR) domain. Five insertions and three deletions in the HOR structure associated with a dominant key string were identified. Concensus HOR was constructed. Divergence of individual HOR copies from concensus amounts to 0.7% on the average, while divergence between 16 monomer variants within each HOR is on the average 20%. In the front and back domain, 199 monomer variants were identified that are not organized in HOR and diverge by 20-40%.  相似文献   

4.
A long-range physical map of the centromeric region of human chromosome 7 has been constructed in order to define the region containing sequences with potential involvement in centromere function. The map is centered around alpha satellite DNA, a family of tandemly repeated DNA forming arrays of hundreds to thousands of kilobasepairs at the primary constriction of every human chromosome. Two distinct alpha satellite arrays (the loci D7Z1 and D7Z2) have previously been localized to chromosome 7. Detailed one- and two- locus maps of the chromosome 7 centromere have been constructed. Our data indicate that D7Z1 and D7Z2 arrays are not interspersed with each other but are both present on a common Mlu I restriction fragment estimated to be 3500 kb and 5500 kb on two different chromosome 7's investigated. These long-range maps, combined with previous measurements of the D7Z1 and D7Z2 array lengths, are used to construct a consensus map of the centromere of chromosome 7. The analysis used to construct the map provides, by extension, a framework for analysis of the structure of DNA in the centromeric regions of other human and mammalian chromosomes.  相似文献   

5.
Summary The centromeric regions of human chromosomes are characterized by diverged chromosome-specific subsets of a tandemly repeated DNA family, alpha satellite, which is based on a fundamental monomer repeat unit 171 bp in length. We have compared the nucleotide sequences of 44 alphoid monomers derived from cloned representatives of the multimeric higher-order repeat units of human chromosomes 1, 11, 17, and X. The 44 monomers exhibit an average 16% divergence from a consensus alphoid sequence, and can be assigned to five distinct homology groups based on patterns of sequence substitutions and gaps relative to the consensus. Approximately half of the overall sequence divergence can be accounted for by sequence changes specific to a particular homology group; the remaining divergence appears to be independent of the five groups and is randomly distributed, both within and between chromosomal subsets. The data are consistent with the proposal that the contemporary tandem arrays on chromosomes 1, 11, 17, and X derive from a common multimeric repeat, consisting of one monomer each from the five homology groups. The sequence comparisons suggest that this pentameric repeat must have spread to these four chromosomal locations many millions of years ago, since which time evolution of the four, now chromosome-specific, alpha satellite subsets has been essentially independent.  相似文献   

6.
We report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a "consensus" in situ hybridisation profile derived from 13 normal individuals revealed the localisation of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocations involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.  相似文献   

7.
8.
Alpha satellite DNA is a tandemly repetitive DNA family found at the centromere of every human chromosome. Chromosome-specific subsets have been isolated for over half the chromosomes and have prove useful as markers for both genetic and physical mapping. We have developed specific oligonucleotide primer sets for polymerase chain reaction (PCR) amplification of alpha satellite DNA from chromosomes 3, 7, 13/21, 17, X, and Y. For each set of primers, PCR products amplified from human genomic DNA are specific for the centromere of the target chromosome(s), as shown by somatic cell hybrid mapping and by fluorescence in situ hybridization. These six subsets represent several evolutionarily related alpha satellite subfamilies, suggesting that specific primer pairs can be designed for most or all chromosomal subsets in the genome. The PCR products from chromosome 17 directly reveal the polymorphic nature of this subset, and a new DraI polymorphism is described. The PCR products from chromosome 13 are also polymorphic, allowing in informative cases genetic analysis of this centromeric subset distinguished from the highly homologous chromosome 21 subset. These primer sets should allow placement of individual centromeres on the proposed STS map of the human genome and may be useful for somatic cell hybrid characterization and for making in situ probes. In addition, the ability to amplify chromosome-specific repetitive DNA families directly will contribute to the structural and functional analysis of these abundant classes of DNA.  相似文献   

9.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

10.
It is believed that pericentromeric heterochromatin may play a major role in the epigenetic regulation of gene expression. We have previously shown that centromeres in human peripheral blood cells aggregate into distinct "myeloid" and "lymphoid" spatial patterns, suggesting that the three-dimensional organization of centromeric heterochromatin in interphase may be ontogenically determined during hematopoietic differentiation. To investigate this possibility, the spatial patterns of association of different centromeres were analyzed in hematopoietic progenitors and compared with those in early-B and early-T cells, mature B and T lymphocytes, and, additionally, mature granulocytes and monocytes. We show that those patterns change during lymphoid differentiation, with major spatial arrangements taking place at different stages during T and B cell differentiation. Heritable patterns of centromere association are observed, which can occur either at the level of the common lymphoid progenitor, or in early-T or early-B committed cells. A correlation of the observed patterns of centromere association with the gene content of the respective chromosomes further suggests that the variation in the composition of these heterochromatic structures may contribute to the dynamic relocation of genes in different nuclear compartments during cell differentiation, which might have functional implications for cell-stage-specific gene expression.  相似文献   

11.
MOTIVATION: GenBank data are at present lacking alpha satellite higher-order repeat (HOR) annotation. Furthermore, exact HOR consensus lengths have not been reported so far. Given the fast growth of sequence databases in the centromeric region, it is of increasing interest to have efficient tools for computational identification and analysis of HORs from known sequences. RESULTS: We develop a graphical user interface method, ColorHOR, for fast computational identification of HORs in a given genomic sequence, without requiring a priori information on the composition of the genomic sequence. ColorHOR is based on an extension of the key-string algorithm and provides a color representation of the order and orientation of HORs. For the key string, we use a robust 6 bp string from a consensus alpha satellite and its representative nature is tested. ColorHOR algorithm provides a direct visual identification of HORs (direct and/or reverse complement). In more detail, we first illustrate the ColorHOR results for human chromosome 1. Using ColorHOR we determine for the first time the HOR annotation of the GenBank sequence of the whole human genome. In addition to some HORs, corresponding to those determined previously biochemically, we find new HORs in chromosomes 4, 8, 9, 10, 11 and 19. For the first time, we determine exact consensus lengths of HORs in 10 chromosomes. We propose that the HOR assignment obtained by using ColorHOR be included into the GenBank database.  相似文献   

12.
Distinct subsets of the human alpha satellite repetitive DNA family can be found in the centromeric region of each chromosome. Here we described the isolation and mapping of an alpha satellite repeat unit specific for human chromosome 10, using a somatic cell hybrid in which the only human centromere derives from chromosome 10. A hierarchical higher-order repeat unit, consisting of eight tandem approximately 171-bp alphoid monomer units, is defined by six restriction endonucleases. Under high-stringency conditions, a cloned representative of this 8-mer repeat family hybridizes to chromosome 10 only, both by Southern blot analysis of a somatic cell hybrid panel and by in situ hybridization. The probe furthermore detects a polymorphic restriction pattern of the alpha satellite array on chromosome 10. These features will make this probe a valuable genetic marker for studies of the centromeric region of chromosome 10.  相似文献   

13.
Mouse chromosomes from the L929 cell line have been treated with Hoechst 33258 to induce undercondensation of centromeric heterochromatin. The morphological changes induced by this fluorochrome were analyzed in electron micrographs of whole-mounted chromosomes. Results show that the condensation inhibition of centromeric heterochromatin caused by Hoechst 33258 is not produced homogeneously and suggest compositional differences within an individual centromere.  相似文献   

14.
In Drosophila melanogaster the centromeric heterochromatin of all chromosomes consists almost entirely of several different satellite DNA sequences. In view of this we have examined by genetic means the meiotic consequences of X chromosomes with partial deletions of their heterochromatin, and have found that the amount and position of recombination on each heterochromatically deleted X is substantially different from that of a normal X. It appears that the amount of heterochromatin is important in modifying the centromere effect on recombination. — In all the deleted Xs tested, chromosome segregation is not appreciably altered from that of a nondeleted control chromosome. Thus satellite DNA does not appear to be an important factor in determining the regular segregation of sex chromosomes in Drosophila. Additionally, since X chromosomes with massive satellite DNA deficiencies are able to participate in a chromocenter within salivary gland nuclei, a major role of satellite DNA in chromocenter formation in this tissue is also quite unlikely. — In order to examine the mechanisms by which the amount of satellite DNA is increased or decreased in vivo, we have measured cytologically the frequency of spontaneous sister chromatid exchanges in a ring Y chromosome which is entirely heterochromatic and consists almost exclusively of satellite DNA. In larval neuroblast cells the frequency of spontaneous SCE in this Y is approximately 0.3% per cell division. Since there is no meiotic recombination in D. melanogaster males and since meiotic recombination in the female does not occur in heterochromatin, our results provide a minimum estimate of the in vivo frequency of SCE in C-banded heterochromatin (which is predominantly simple sequence DNA), without the usual complications of substituted base analogs, incorporated radioactive label or substantial genetic content. — We emphasise that: (a) satellite DNA is not implicated in any major way in recognition processes such as meiotic homologue recognition or chromocenter formation in salivaries, (b) there is likely to be continuous variation in the amount of satellite DNA between individuals of a species; and (c) the amount of satellite DNA can have a crucial functional role in the meiotic recombination system.  相似文献   

15.
Y Ge  M J Wagner  M Siciliano  D E Wells 《Genomics》1992,13(3):585-593
We have characterized alphoid repeat clones derived from a chromosome 8 library. These clones are specific for human chromosome 8, as demonstrated by use of a somatic cell hybrid mapping panel and by in situ hybridization. Hybridization of the clones to HindIII digests of human genomic DNA reveals a complex pattern of fragments ranging in size from 1.3 to greater than 20 kb. One clone, which corresponds in size to the most prevalent genomic HindIII fragment, appears to represent a major higher order repeat in the chromosome 8 centromere. The DNA sequence of this clone reveals a dimeric organization of alphoid monomers. Restriction analysis of two other clones indicates that they are derivatives of this same repeat unit. The chromosome 8 alphoid clones hybridize to EcoRI fragments of genomic DNA ranging up to 1000 kb in length and reveal a high degree of polymorphism between chromosomes. Distribution of higher order repeat units across the centromere was examined by two-dimensional gel electrophoresis. Repeat units of the same size class tended to cluster together in restricted regions of centromeric DNA.  相似文献   

16.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

17.
Despite important roles in myocardial hypertrophy and benign prostatic hyperplasia, little is known about acute effects of agonist stimulation on alpha(1a)-adrenergic receptor (alpha(1a)AR) signaling and function. Regulatory mechanisms are likely complex since 12 distinct human alpha(1a)AR carboxyl-terminal splice variants have been isolated. After determining the predominance of the alpha(1a-1)AR isoform in human heart and prostate, we stably expressed an epitope-tagged alpha(1a-1)AR cDNA in rat-1 fibroblasts and subsequently examined regulation of signaling, phosphorylation, and internalization of the receptor. Human alpha(1a)AR-mediated inositol phosphate signaling is acutely desensitized in response to both agonist and phorbol 12-myristate 13-acetate (PMA) exposure. Concurrent with desensitization, alpha(1a)ARs in (32)P(i)-labeled cells are rapidly phosphorylated in response to both NE and PMA stimulation. Despite the ability of PKC to desensitize alpha(1a)ARs when directly activated with PMA, inhibitors of PKC have no effect on agonist-mediated desensitization. In contrast, involvement of GRK kinases is suggested by the ability of GRK2 to desensitize alpha(1a)ARs. Internalization of cell surface alpha(1a)ARs also occurs in response to agonist stimulation (but not PKC activation), but is initiated more slowly than receptor desensitization. Significantly, deletion of the alpha(1a)AR carboxyl terminus has no effect on receptor internalization or either agonist-induced or GRK-mediated receptor desensitization. Because mechanisms underlying acute agonist-mediated regulation of human alpha(1a)ARs are primarily independent of the carboxyl terminus, they may be common to all functional alpha(1a)AR isoforms.  相似文献   

18.
19.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

20.
DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well as fractionation of the extracts revealed that most of the discontinuous DNA synthesis was attributable to DNA polymerase alpha. Additionally, discontinuous DNA synthesis could be eliminated by incubation with an antibody that specifically neutralized DNA polymerase alpha activity. To test the relative efficiency of each nuclear DNA polymerase for discontinuous synthesis, equal amounts (as measured by DNA polymerase activity) of DNA polymerases alpha, beta, delta (+/- PCNA) and straightepsilon (+/- PCNA) were used in the discontinuous DNA synthesis assay. DNA polymerase alpha showed the most discontinuous DNA synthesis activity, although small but detectable levels were seen for DNA polymerases delta (+PCNA) and straightepsilon (- PCNA). Klenow fragment and DNA polymerase beta showed no discontinuous DNA synthesis, although at much higher amounts of each enzyme, discontinuous synthesis was seen for both. Discontinuous DNA synthesis by DNA polymerase alpha was seen with substrates containing 3 and 4 bp single-strand stretches of complementarity; however, little synthesis was seen with blunt substrates or with 1 bp stretches. The products formed from these experiments are structurally similar to that seen in vivo for non-homologous end joining in eukaryotic cells. These data suggest that DNA polymerase alpha may be able to rejoin double-strand breaks in vivo during replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号