首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HMG-CoA reductase inhibitors (statins) exert pleiotropic effects in the cardiovascular system beyond its cholesterol-lowering action. We aimed to investigate how atorvastatin affects extracellular nucleotide degradation in human endothelial cells, as increased activity of this pathway would facilitate conversion of pro-inflammatory nucleotides into anti-inflammatory adenosine. Primary cultures of human endothelial cells were treated with 1 μM, 10 μM and 100 μM atorvastatin for 24 h. Enzyme assays were performed as well as intact cell studies, to evaluate capacity of cells to degrade ATP to adenosine. Atorvastatin significantly increased ATP breakdown and adenosine formation in the medium of intact cells in a dose-dependent manner. The activities of ATPase, ADPase and ecto-5′-nucleotidase (eN) in cell homogenates following Atorvastatin treatment were also increased while no change was observed in the lactate dehydrogenase activity. We suggest a new mechanism of protective effect of atorvastatin by activation of endothelial enzymes involved in extracellular nucleotide degradation in human endothelial cells.  相似文献   

2.
Ecto-nucleotidases, one of the main mechanisms involved in the control of adenosine levels in the synaptic cleft, have shown increased activities after the pilocarpine model of epilepsy. Here we have investigated the effect of the antiepileptic drugs (AEDs) on ecto-nucleotidase activities from hippocampal and cerebral cortical synaptosomes of rats at seven days after the induction of the pilocarpine model. Expression of these enzymes were investigated as well. Our results have demonstrated that phenytoin (50 mg/kg) and carbamazepine (30 mg/kg) were able to prevent the increase in ecto-nucleotidase activities elicited by pilocarpine in brain synaptosomes. However, sodium valproate (at 100 mg/kg) was only able to avoid the increase on ATP and ADP hydrolysis in hippocampal synaptosomes. Increase on ATP hydrolysis in hippocampal synaptosomes was also prevented by sodium valproate at 286 mg/kg, which corresponds to ED50 for pilocarpine model. NTPDase1, NTPDase2, NTPDase3, and ecto-5′-nucleotidase expressions were not affected by pilocarpine in cerebral cortex. However, expressions of NTPDase2, NTPDase3, and ecto-5′-nucleotidase were increased by pilocarpine in hippocampus. Our results have indicated that previous treatment with AEDs was able to prevent the increase in hippocampal ecto-nucleotidases of pilocarpine-treated rats. These findings have shown that anticonvulsant drugs can modulate plastic events related to the increase of nucleotidase expression and activities in pilocarpine-treated rats.  相似文献   

3.
Xenotransplantation is one be possible solution for a severe shortage of human organs available for transplantation. However, only a few studies addressed metabolic compatibility of transplanted animal organs. Our aim was to compare activities of adenosine metabolizing enzymes in the heart of different species that are relevant to clinical or experimental xenotransplantation. We noted fundamental differences: ecto-5′nucleotidease (E5′N) activity was 4-fold lower in pig and baboon hearts compared to the human hearts while mouse activity was compatible with human and rat activity was three times higher than human. There also were significant differences in AMP-deaminase (AMPD), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) activities. We conclude that differences in nucleotide metabolism may contribute to organ dysfunction after xenotransplantation.  相似文献   

4.
Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.Elizandra Braganhol and Alessandra Nejar Bruno are first authors.  相似文献   

5.
Summary. Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5′-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5′-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5′-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A2A receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A1 receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5′-nucleotidase and on cellular damage. The adenosine formed from ecto-5′-nucleotidase stimulation preferentially acted on adenosine A2A receptor which is probably co-operating with the neurotoxicity induced by amino acids.  相似文献   

6.
Two recent papers reveal that the soluble and secreted prostatic acid phosphatase, an enzyme that has long served as a diagnostic marker for prostate cancer, has a membrane-bound splice variant. This enzyme exhibits ecto-5′-nucleotidase activity, is widely distributed, and implicated in the formation of chronic pain. While prostatic acid phosphatase hydrolyzes phosphomonoesters other than 5′-nucleoside monophosphates these novel data suggest that, in addition to ecto-5′-nucleotidase and the alkaline phosphatases, prostatic acid phosphatase must be taken into account in future studies on extracellular adenosine production.  相似文献   

7.
The retinal pigment epithelium (RPE) is separated from the photoreceptor outer segments by the subretinal space. While the actual volume of this space is minimal, the communication that occurs across this microenvironment is important to the visual process, and accumulating evidence suggests the purines ATP and adenosine contribute to this communication. P1 and P2 receptors are localized to membranes on both the photoreceptor outer segments and on the apical membrane of the RPE which border subretinal space. ATP is released across the apical membrane of the RPE into this space in response to various triggers including glutamate and chemical ischemia. This ATP is dephosphorylated into adenosine by a series of ectoenzymes on the RPE apical membrane. Regulation of release and ectoenzyme activity in response to light-sensitive signals can alter the balance of purines in subretinal space, and thus coordinate communication across subretinal space with the visual process.  相似文献   

8.
Primary astrocyte cultures from hippocampus, cortex and cerebellum presented different extracellular pattern of adenine nucleotide hydrolysis. The ATP/ADP hydrolysis ratio was 8:1 for hippocampal and cortical astrocytes and 5:1 for cerebellar astrocytes. The AMP hydrolysis in cerebellar astrocytes was seven-fold higher than in cortical or hippocampal cells. No accumulation of extracellular adenosine in all structures studied was observed. Dipyridamol increased significantly inosine levels in the extracellular medium of hippocampal and cortical, but not in cerebellar astrocytes medium. A higher expression of ecto-5′-nucleotidase was identified by RT-PCR in cerebellum. The differences observed may indicate functional heterogeneity of nucleotides in the brain.  相似文献   

9.
Ecto-3′-nucleotidase/nuclease (3′NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3′mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3′-nucleotidase activity (La3′-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3′-nucleotidase inhibitor and approach the possible involvement of ecto-3′-nucleotidase in cellular adhesion. La3′-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3′-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu2+ ions. Interestingly, ecto-3′-nucleotidase activity is 60-fold higher than that of ecto-5′-nucleotidase in L. amazonensis. Additionally, ecto-3′-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage–parasite attachment/invasion was increased by 400% in the presence of adenosine 3′-monophosphate (3′AMP); however, this effect was reverted by TTM treatment. We believe that La3′-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.  相似文献   

10.
Summary The 5′-AMPase activity of the ectoenzyme 5′-nucleotidase has been measured in a variety of cell lines, using intact cells. Human cell types showed two orders of magnitude higher enzyme activity than mouse cell lines. The ectoenzyme is inhibited by adenosine 5′-(α,β-methylene) diphosphate and Concanavalin A. A different extent of 5′-nucleotidase lectin inhibition was observed in the studied cell lines, suggesting that the corresponding ectoenzymes are glycoproteins with a different type or degree, or both, of glycosylation. The 5′-nucleotidase activity increased during subculture and decreased after cell transformation. Generally, the 5′-nucleotidase activity was two-to five-fold higher in monolayer than in suspension cell culture. A relation between cell growth and 5′-AMPase activity was also observed. Enzyme activity increased at the end of the lag phase (glioblastoma cells) or during the exponential phase (the other two cell lines). After confluence, the activity decreased to the initial or even lower range of activity. Observed activity variations with cell proliferation correlate with modifications of 5′-AMPase activity during subculture. This work was supported by grant no. PR84-0359 from the Comisión Asesora de Investigación Científica y Técnica (Spain).  相似文献   

11.
Endothelial degradation of extracellular nucleotides is known to be an important mechanism in regulation of thrombosis, inflammation and immune response. It is possible that this pathway is a target for pleiotropic drugs such as atorvastatin. We studied therefore the effect of atorvastatin on extracellular nucleotide degradation in human endothelial cells. Atorvastatin treatment of human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1) resulted in significant increase in ATP breakdown and adenosine formation both if analysed in intact cell studies and as enzyme activity in cell lysates. We conclude that one of the beneficial effects of atorvastatin may include acceleration of extracellular nucleotide breakdown. This will attenuate nucleotide mediated pro-inflammatory effect and stimulate protective mechanisms of adenosine.  相似文献   

12.
Ecto-5′-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46–52-week-old wild type (WT) and CD73 knock-out mice (CD73?/?) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73?/? mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.  相似文献   

13.
The nucleotide degrading enzymes, ectonucleotidases, present on the platelet surface of human pregnant with a normal (without complications) or high risk for thrombosis (hypertension and gestational diabetes) were studied. NTPDase (E.C. 3.6.1.5, CD39) and 5′-nucleotidase (E.C. 3.1.3.5, CD73) activities of four patient groups, non-pregnant (NP, n = 18), pregnant without complications (P, n = 25), pregnant with hypertension (HP, n = 15) and pregnant with gestational diabetes mellitus (GDP, n = 10), were analyzed. Increased NTPDase activities were observed in the groups P (37.0%, S.D. = 2.03 and 34.0%, S.D. = 3.19), HP (40.0%, S.D. = 3.32 and 56.0%, S.D. = 3.25) and GDP (23.0%, S.D. = 2.30 and 42.0%, S.D. = 2.26) in comparison to the control group NP (p < 0.01, S.D. = 1.92 and S.D. = 2.48) when ATP and ADP were used as substrate, respectively. AMP was used as substrate to determine the 5′-nucleotidase activities, which showed to be elevated in the groups P (45.0%, S.D. = 1.73), HP (54.0%, S.D. = 2.64) and GDP (68.0%, S.D. = 1.69) when compared to the control group NP (p < 0.01, S.D. = 1.26). However, no statistically significant differences were observed between the groups P, HP and GDP. As a consequence, the enhanced ATP, ADP and AMP hydrolysis was ascribed to the pregnancy itself, independent of a normal or high risk for thrombosis. The enhanced NTPDase and 5′-nucleotidase activities in platelets suggest that these enzymes are involved in the thromboregulation process in the pregnancy.  相似文献   

14.
Ecto-5'-nucleotidase (e-5NT) is a cell-surface located, rate-limiting enzyme in the extracellular metabolism of ATP, catalyzing the final step of the conversion of AMP to adenosine. Since this enzyme shifts the balance from pro-inflammatory ATP to anti-inflammatory adenosine, it is considered to be an important regulator of inflammation. Although up-regulation of e-5NT was repeatedly reported in several in vivo models of brain injury, the regulation of its expression and function remains largely unknown. We have studied effects of several pro-inflammatory factors, namely, bacterial endotoxin lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), glutamate (Glu) and hydrogen peroxide (H(2)O(2)) on e-5NT (i) activity, (ii) mRNA expression and (iii) membrane protein abundance in primary cultured cortical astrocytes. We are clearly able to demonstrate a stimulus-specific regulation of the e-5NT pathway. IFN-γ, LPS, Glu and H(2)O(2) decrease, while TNF-α increases e-5NT activity. The analysis of e-5NT gene expression and e-5NT membrane protein levels revealed that tested factors regulate e-5NT at different levels and by employing different mechanisms. In summary, we provide evidence that e-5NT activity is tightly regulated in a stimulus-specific manner.  相似文献   

15.
Purinergic Signalling - Adenosine triphosphate (ATP) and adenosine are neurotransmitters and neuromodulators in the central nervous system. Astrocytes regulate extracellular concentration of...  相似文献   

16.
Human endothelial activity of ecto-5′-nucleotidase (E5′N) is several times higher than in pig endothelial cells. This may have implication for xenotransplantation due to the role this enzyme plays in conversion of pro-inflammatory and pro-aggreggatory nucleotides into anti-inflammatory and anti-aggregatory adenosine. We have shown in this study that human E5′N can be functionally expressed in pig endothelial cells leading to increased adenosine production from both extracellular AMP and ATP. We suggest that E5′N expression in transgenic pigs for xenotransplantation may help to prolong graft survival.  相似文献   

17.
The acrodermatitis enteropathica (AE) mutation affects zinc (Zn) metabolism in human fibroblasts. We hypothesize that the mutation affects the cell Zn content, which subsequently affects the activity of various zinc-dependent enzymes, such as 5′-nucleotidase. Therefore, normal and AE fibroblasts were grown in normal medium containing physiological levels of Zn (16 Μmol/L) for ∼24 h. The medium was replaced by normal medium (16 Μmol/L Zn), Zn-depleted medium (1.5 Μmol/L Zn), or Zn-supplemented medium (200 Μmol/L Zn) for another 24 h. Regardless of the Zn concentration of the growth medium, the AE fibroblasts contained significantly less Zn than normal fibroblasts grown in comparable medium. Nevertheless, growth of the fibroblasts in 200 Μmol/L Zn medium significantly increased the cell Zn content fourfold of both normal and AE fibroblasts. The activity of 5′-nucleotidase in the AE fibroblasts grown in 16 Μmol/L Zn or 1.5 Μmol/L Zn medium was also significantly lower than in normal fibroblasts. Changing the growth medium from 16 Μmol/L Zn to 1.5 Μmol/L Zn medium did not affect the activity of the enzyme in either genotype. Cells grown in 200 Μmol/L Zn medium exhibited threefold greater 5′-nucleotidase activity in AE fibroblasts, but had no affect on enzyme activity in normal cells. In summary, altering the cell Zn content of normal fibroblasts did not result in a significant change in their 5′ -nucleotidase activity. However, AE fibroblasts grown in 200 Μmol/L Zn medium exhibited recovery of their 5′-nucleotidase activity to normal levels. These results support the hypothesis that the AE mutation affects the cellular Zn content. The lower cell Zn content subsequently affects the activity of 5′-nucleotidase.  相似文献   

18.
19.
Neonatal handled rats ingest more sweet food than non-handled ones, but it was documented only after puberty. Here, we studied the purinergic system in the nucleus accumbens, a possible target for the alteration in the preference for palatable food. We measured the ATP, ADP and AMP hydrolysis mediated by ectonucleotidases in synaptosomes of the nucleus accumbens in periadolescent and adult rats from different neonatal environments: non-handled and handled (10 min/day, first 10 days of life). Before adolescence, we found a decreased ingestion of sweet food in the neonatally handled group, with no effect on ATP, ADP or AMP hydrolysis. In adults, we found a greater ingestion of sweet food in the neonatally handled group, with no effect on ATPase or ADPase activities, but a decreased AMP hydrolysis. The nucleus accumbens is a site of intensive interaction between the adenosinergic and dopaminergic systems. Therefore, adenosine may modulate accumbens’ dopamine neurotransmission differently in neonatally handled rats.  相似文献   

20.
Abstract

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5′-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with “classical” inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号