首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. There is a bilaterally symmetric pair of large serotonin-containing neurones in the cerebral ganglia of Planorbis corneus. 2. In some animals these neurones are connected by a non-rectifying electrotonic synapse, and fire in synchrony even at prolonged high frequency. In other animals the neurones are not coupled, and fire independently except when driven by common input. Occasionally the coupling is weak. 3. Both coupled and non-coupled serotonin neurones have processes in the major nerve trunks of both buccal ganglia. 4. Synapses are made with many neurones in the buccal ganglia. The serotonin neurones can initiate firing in several motoneurones and thus produce movements of the buccal mass. 5. During spontaneous feeding cycles the input and firing pattern of the serotonin neurones do not bear any obvious relation to the movements of the buccal mass. 6. The data suggest that the serotonin neurones are modulatory cells, altering the level of excitability of buccal ganglion neurones.  相似文献   

2.
Spinal motoneurones receive thousands of presynaptic excitatory and inhibitory synaptic contacts distributed throughout their dendritic trees. Despite this extensive convergence, there have been very few studies of how synaptic inputs interact in mammalian motoneurones when they are activated concurrently. In the experiments reported here, we measured the effective synaptic currents and the changes in firing rate evoked in cat spinal motoneurones by concurrent repetitive activation of two separate sets of presynaptic neurons. We compared these effects to those predicted by a linear sum of the effects produced by activating each set of presynaptic neurons separately. We generally found that when two inputs were activated concurrently, both the effective synaptic currents and the synaptically-evoked changes in firing rate they produced in motoneurones were generally linear, or slightly less than the linear sum of the effects produced by activating each input alone. The results suggest that the spatial distribution synaptic terminals on the dendritic trees of motoneurones may help isolate synapses from one another, minimizing non-linear interactions.  相似文献   

3.
Bath application of 10(-5) mol/l of serotonin (5-HT) elicited a 50% increase of summary EPSPs recorded in command neurones for avoidance behaviour. No significant changes of rest potential and input resistance were seen in these cells. 5-HT evoked an increase of spontaneous level of firing in motoneurones involved in the same reflex, as well as an increase in the number of spikes which paralleled increase of EPSPs to the same stimulus in command neurones. In sensory cells, presynaptic to the command neurones, application of 5-HT evoked a significant increase of excitability and of input resistance. Monosynaptic EPSPs recorded in the command neurones showed a 40% increase after serotonin application. It is concluded that the major locus of plastic changes evoked by 5-HT application in the neuronal chain underlying avoidance reflex is the synaptic contact between sensory and command neurones.  相似文献   

4.
There are a limited number of ways by which an orderly recruitment of motoneurones by size might occur in a population of similar neurones activated by synapses with invariant average properties and uniform distribution: (i) The smaller motoneurones might have lower voltage thresholds, or, if spherical, current thresholds that increase more rapidly than the square of the diameter, or faster than the inverse of input resistance, (ii) Smaller motoneurones might receive a higher uniform density of afferent boutons than larger cells, (iii) Larger cells might show a disproportionately large increase in soma diameter compared with smaller cells, thus having a smaller ratio of soma to dendrite input resistances.In particular, a size principle does not automatically arise from cells receiving a constant density of afferent terminals, even if the afferents end preferentially on the motoneurone dendrites, and despite the fact that individual synapses generate larger EPSPs in smaller cells.  相似文献   

5.
The aim of this study was to identify myenteric pathways to the circular and longitudinal muscle of the guinea pig proximal colon. To identify excitatory and inhibitory muscle motoneurones, we applied the neuronal retrograde tracer DiI onto the circular or longitudinal muscle layer and performed additional immunohistochemistry for nitric oxide synthase (NOS) and choline acetyltransferase (ChAT). On average 166 +/- 81 circular muscle motoneurones (CMMN) and 100 +/- 74 longitudinal muscle motoneurones (LMMN) were labelled by DiI tracing. Myenteric pathways innervating the muscle were either ascending (DiI-labelled neurones with oral projections) or descending (DiI-labelled neurones with anal projections). The circular muscle was preferentially innervated by ascending pathways (66.0 +/- 9.1%). Most ascending CMMN were ChAT-positive (87.2 +/- 8.5%), whereas descending CMMN were mainly NOS-positive (82.3 +/- 14.6%). Most ascending (62.2 +/- 11.1%) and descending (82.0 +/- 12.5%) CMMN had circumferential projection preferences (circumferential projections were longer than projections along the longitudinal gut axis). In contrast to the polarised projections to the circular muscle, the longitudinal muscle was equally innervated by ascending (46.2 +/- 15.1%) and descending (53.9 +/- 15.1%) neurones. Ascending and descending pathways to the longitudinal muscle consisted predominantly of ChAT-positive neurones (98.1 +/- 1.9% and 68.0 +/- 8.5%, respectively), and both pathways had prominent longitudinal projection preferences. Only 25.5% of the descending LMMN were NOS-positive. In conclusion, the circular muscle in the proximal colon is innervated by descending inhibitory (NOS-positive neurones) and ascending excitatory (ChAT-positive neurones) pathways. In contrast, the longitudinal muscle is primarily innervated by ascending and descending excitatory motoneurones, and only a small proportion of the descending pathway consisted of inhibitory motoneurones.  相似文献   

6.
Troglitazone (TGZ), an antidiabetic drug that improves insulin-resistance in the peripheral tissues, was tested for neurotrophic activity in motoneurones and other neurones in culture. In rat motoneurones, TGZ had a remarkable effect on survival, which was comparable or superior to that of brain-derived neurotrophic factor, a known potent neurotrophic factor for rat motoneurones. However, TGZ did not promote the survival of sensory, sympathetic, septal or hippocampal neurones. The effect of TGZ on motoneurones was additive to that of insulin-like growth factor-I and both activities were inhibited by phosphatidylinositol 3-kinase (PI3-kinase) inhibitors, wortmannin and LY294002, suggesting the involvement of the activation of PI3-kinase in the activity of TGZ. Pioglitazone, another antidiabetic drug structurally similar to TGZ, did not show any activity, indicating that the agonistic activity of TGZ for peroxisome proliferator-activated receptor-gamma is not involved in the survival activity. Chromanol, an antioxidant moiety of TGZ, showed little or no survival activity. These results indicate specific neurotrophic activity of TGZ for motoneurones through the activation of PI3-kinase and support the applicability of TGZ for the treatment of motor neurone diseases such as amyotrophic lateral sclerosis.  相似文献   

7.
The location within the prothoracic ganglion of neurone somata with axons in identified peripheral nerves is examined by the cobalt iontophoresis technique. Axons are filled with cobalt by diffusion through their cut ends and the cobalt is then precipitated as the black sulphide inside the neurone. It is assumed that neurones with axons in peripheral nerves and somata in central ganglia are either motor or neuro-secretory. Fifteen nerves are examined and maps of the location of somata with axons in each nerve are presented. The axon distribution in peripheral nerves of three common inhibitory neurones is described. Dendritic morphology of one common inhibitory neurone and two coxal depressor motoneurones is illustrated. It is proposed that some individual neurones can be reliably identified from their soma dimensions and location within the ganglion. The number of motoneurones with somata in the prothoracic ganglion and their homology with cells in the other thoracic ganglia are discussed.  相似文献   

8.
In the ventral hindbrain and spinal cord of zebrafish embryos, the first neurones that can be identified appear as single cells or small clusters of cells, distributed periodically at intervals equal to the length of a somite. In the hindbrain, a series of neuromeres of corresponding length is present, and the earliest neurones are located in the centres of each neuromere. Young neurones within both the hindbrain and spinal cord were identified in live embryos using Nomarski optics, and histochemically by labelling for acetylcholinesterase activity and expression of an antigen recognized by the monoclonal antibody zn-1. Among them are individually identified hindbrain reticulospinal neurones and spinal motoneurones. These observations suggest that early development in these regions of the CNS reflects a common segmental pattern. Subsequently, as more neurones differentiate, the initially similar patterning of the cells in these two regions diverges. A continuous longitudinal column of developing neurones appears in the spinal cord, whereas an alternating series of large and small clusters of neurones is present in the hindbrain.  相似文献   

9.
The projection of peripheral sensory and motor nerves was investigated in the pigeon (Columba livia) by means of retrogradely transported fluorescent dyes. Two combinations of fluorescent tracers were used that could be identified within the same cell when excited by light of 405 nm: 1) Propidium iodide and Bisbenzimide, which label the cytoplasm orange and the nucleus blue, respectively; 2) Fast Blue, which labels the cytoplasm blue, and Nuclear Yellow, which labels the nucleus (especially the nucleolar ring) yellow. The presence of the tracers in a given cell was confirmed microspectrophotometrically. Following injection of the tracers into peripheral nerves, labelled sensory neurones were seen in the dorsal root ganglia and motoneurones of the spinal cord. The peroneal and tibial nerves projected to L2-L5 and L2-L7, respectively, whereas the median and ulnar nerves projected to C12-Th2 and C13-Th1. Double-labelled sensory neurones were observed when both peroneal and tibial, or median and ulnar nerves were injected with different tracers. This indicates that some sensory neurones possess peripheral processes that dichotomize to pass down two different peripheral nerves. Double labelling was never seen in motoneurones, or in sensory neurones after tracer injection into the sciatic and femoral nerves.  相似文献   

10.
In experiments on preparations of isolated spinal cord of the tadpoles, intracellular studies have been made on the synaptic potentials evoked in the lumbar motoneurones during total activation of the fibers within the 9th dorsal root. It was shown that primary afferents form monosynaptic contacts with motoneurones at stages XIV-XXV. During larval development, the number of motor cells in which monosynaptic EPSPs are recorded increases, whereas the number of motoneurones with only polysynaptic reactions decreases. From the moment of formation of monosynaptic contacts, transmission in direct sensory-motor synapses is realised by a dual (electrical-chemical) mode. The data obtained are discussed in relation to the problem of evolution of synaptic transmission between heterotypic neurones in vertebrates.  相似文献   

11.
Effects of capsaicin on voltage-gated currents were examined in vitro by whole-cell patch-clamp recordings from small neurones of rat trigeminal ganglia either in slice preparations or in different cell cultures. Cells were classified as sensitive to capsaicin if they responded with inward current and/or conductance change to the agent in nanomolar concentration. Capsaicin (150 to 330 nM) in sensitive cells reduced the mixed inward current evoked by depolarizing step or ramp commands in all preparations. In cultured cells, the inward current was depressed to 32.78 +/- 26.42% (n = 27) of the control. Both the tetrodotoxin-sensitive and -resistant inward currents were affected. The data support the concept that capsaicin besides acting on VR-1 receptors inhibits also some voltage gated channels. In 34 cultured cells, capsaicin increased the slope conductance to 170.5 +/- 68%. Percentage of capsaicin sensitive cells observed in nerve growth factor-treated cultured cell populations was higher (77.8%) than in the two other preparations (14.3 or 38.8%). It is concluded that 1) depression of the voltage-gated currents may play an important role in the functional desensitization of the sensory receptors and in the analgesic effect induced by the agent and 2) cell body of sensory neurones under native condition seems less sensitive to capsaicin then that of cells cultured in the presence of nerve growth factor.  相似文献   

12.
1. The connexions between stretch receptors of the wings and motoneurones innervating flight muscles have been studied anatomically and physiologically. 2. Filling with cobaltous chloride shows that the single neurone of a forewing stretch receptor has a complex pattern of branches within the mesothoracic ganglion and branches which extend into the pro- and meta-thoracic ganglia. The single neurone of a hindwing stretch receptor has extensive branches in the metathoracic ganglion and branches in themesothoracic ganglion. The branches of both receptors are confined to the ipsilateral halves of the ganglia. 3. A stretch receptor gives information about the velocity and extent of elevation of a wing. 4. Each spike of a forewing stretch receptor casuses an EPSP in ipsilateral mesothoracic depressor motoneurones and an IPSP in elevators. The connexions are thought to be monosynaptic for the following reasons. The EPSPs in the first basalar (depressor) motoneurone follow each spike of the stretch receptor at a frequency of 125 Hz and with a constant latency of about 1 msec. In a Ringer solution containing 20 mM-Mg2+ the amplitude EPSP declines gradually. The IPSP'S upon elevators have similar properties but occur with a latency of 4-6 msec. 5. The connexions therefore comprise a monosynaptic negative feed-back loop; elevation of the wing excites the stretch receptor which then inhibits the elevator motoneurones and excites the depressors. 6. A hindwing stretch receptor synapses upon metathoracic flight motoneurones in the same way, causing EPSPs in depressor and IPSPs in elevator motoneurones. 7. No connexions of either fore- or hindwing stretch receptors have been found with contralateral flight motoneurones. 8. Interganglionic connexions are made by both receptors. For example, both fore- and hindwing stretch receptors cause EPSPs upon the meso- and metathoracic first basalar motoneurones. 9. Stimulation of the axon of a stretch receptor with groups of three stimuli repeated every 50-100 msec thus simulating the pattern which it shows during flight, causes subthreshold waves of depolarization in depressor motoneurones. When summed with an unpatterned input, the stretch receptor is able to influence the production of spikes in motoneurones on each cycle. During flight, it is expected that the stretch receptor will influence the time at which a motoneurone will spike and hence have an effect on the amplitude of the upstroke and upon the phase relationship between spikes of motoneurones.  相似文献   

13.
Movements of the antennae induced by odour were investigated. Odour presented to the antenna of one side induced both antennae to move to that side. The EMGs recorded from the flexor muscles of both scapes showed that the latency of the movement of the ipsilateral flagellum when induced by odour was about 71 msec shorter than that of the contralateral flagellum. Recording electrical activities from the antennal nerve showed that there are more than 14 neurones in the antenno-motor externus.The distribution of the antennal nerve in the brain was investigated histologically by the injection of fluorescent dye. Antennal sensory neurones terminated at the glomeruli in the antennal lobe, in the dorsal lobe, in the protocerebrum, and in the commissural part of the suboesophageal ganglion. Injection of the fluorescent dye into the antennal nerve after degeneration of the antennal sensory neurones showed that the antennal motoneurones run in the ventral side of the antennal and dorsal lobes, and terminate in the marginal region of the ipsilateral oesophageal connective.The difference in latency of odour-induced flagellar movements is discussed in relation to the histological results and the unitary responses in the brain reported previously.  相似文献   

14.
A spinal "respiration" generator has been shown to fire phrenic motoneurones in rhythmic bursts. It is very likely driven through bulbo-spinal inspiratory neurones in intact preparations. Although no direct evidence for respiratory interneurones at the C4-C5 spinal levels has been obtained so far (except for Renshaw cells ), it is currently believed that only few inspiratory inputs to the phrenic motoneurones are transmitted monosynaptically from the medulla. We have tried here to record spinal interneuronal respiratory activities in decorticate, unanaesthetized, vagotomized and curarized rabbit preparations. Different functional categories of interneurones could be identified at the C4-C5 spinal levels: inspiratory and expiratory interneurons with various discharge patterns which rather well correspond to the functional categories of inspiratory and expiratory bulbo-spinal neurones described by Bianchi and Richter. In addition, multiunit inspiratory bursting could be followed over several 100 microns during each electrode penetration. The different categories of interneurones were encountered laterally from 700 to 1,000 microns, at depths ranging from 300 to 500 microns dorsally to the phrenic nucleus, down to the nucleus itself. These results indicate that part of the medullary inspiratory drive is channelled via spinal cord interneurones; they also suggest that an inhibition of phrenic motoneurones from the bulbo-spinal expiratory drive takes place via interneurones.  相似文献   

15.
The effect of suramin, an inhibitor of G protein regulated signalling, was studied on the membrane currents induced by noxious heat and by capsaicin in cultured dorsal root ganglia neurones isolated from neonatal rats. Whole-cell responses induced by a heat ramp (24-52 degrees C) were little affected by suramin. The noxious heat-activated currents were synergistically facilitated in the presence of 0.3 microM capsaicin 13.2-fold and 6.3-fold at 40 degrees C and 50 degrees C, respectively. In 65% of neurones, the capsaicin-induced facilitation was inhibited by 10 microM suramin to 35 +/- 6% and 53 +/- 6% of control at 40 degrees C and 50 degrees C (S.E.M., n = 15). Suramin 30 microM caused a significant increase in the membrane current produced by a nearly maximal dose (1 microM) of capsaicin over the whole recorded temperature range (2.4-fold at 25 degrees C and 1.2-fold at 48 degrees C). The results demonstrate that suramin differentially affects the interaction between capsaicin and noxious heat in DRG neurones and thus suggest that distinct transduction pathways may participate in vanilloid receptor activation mechanisms.  相似文献   

16.
Application of desglycine-argininvasopressin (DG-AVP) differently influenced different types of cells of snail isolated central nervous system. In neurosecretory cells an increase of spontaneous impulse activity took place and, as a rule, bursts of impulses appeared, most often of synaptic origin, excluding PPa1 neurones and one of the neurosecretory cells of the left parietal ganglion. The increase of the bursts activity in these cells was based on the increase of the amplitude of membrane potential waves. Under the influence of neurosecretory cells system activation, EPSPs frequency and amplitude in secondary-sensory neurones increased, which led to a greater probability of the action potentials appearance. At prolonged action the spontaneous EPSPs in these cells began to group in bursts. Excitability and membrane resistance of these cells remained unchanged. DG-AVP had no influence on primary-sensory neurones and motoneurones.  相似文献   

17.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

18.
Extraocular muscle motoneurones were localised in the oculomotor nucleus (ON), trochlear nucleus (TN) and abducens nucleus (AN) in the marmoset brain using the horseradish peroxidase (HRP) retrograde labelling technique. HRP pellets injected into individual extraocular muscles revealed one or more groups of labelled neurones occupying discrete loci within these nuclei. Relatively little overlap of motoneurone pools was observed, except in the case of the inferior oblique and superior rectus muscles. Injections of HRP into the medial rectus muscle revealed three separate populations of labelled cells in the ipsilateral ON. Motoneurones innervating the inferior rectus muscle were mainly localised in the lateral somatic cell column of the ipsilateral ON. A second smaller grouping was observed in the medial longitudinal fasciculus. The inferior oblique muscle motoneurones were localised in the ipsilateral medial somatic cell column intermingled with motoneurones supplying the superior rectus muscle of the opposite eye. The superior oblique muscle motoneurones occupied the entire TN and the lateral rectus muscle motoneurones the AN. It was concluded that the organisation of nuclei and subnuclei responsible for controlling the extraocular muscles in the marmoset is broadly similar to that of other primates.  相似文献   

19.
Deutocerebral projection neurones in the brain of the cricket (Gryllus bimaculatus) have been investigated by experimental dextran staining, viewed by light and electron microscopy. These neurones of two separate somata clusters innervate two separate primary glomerular neuropils of the deutocerebral segment, either the antennal lobe receiving only antennal nerve sensory input, or the glomerular lobe, receiving input from sensory neurones of lower segmental origin, including chemosensory fibres from mouth parts. Projection neurones of the antennal lobe only invade the anterior calyx of the mushroom body neuropil via the inner antenno glomerular tract, while glomerular relay neurones of the glomerular lobe innervate only the posterior calyx via the tritocerebral tract. All types of projection neurones give rise to presynaptic boutons. forming the central core of microglomeruli with patterned distribution. These projection neurons are cholinergic. The results are discussed in view of maintained segregated modal information, first processed in the separated primary deutocerebral neuropiles and further on in the second order input neuropils of the mushroom bodies. The large posterior calyces are proposed as a compartment for gustatory information.  相似文献   

20.
In the locustid Locusta migratoria and the tettigoniids Decticus verrucivorus and Tettigonia cantans, comparative aspects of physiological properties of vibratory/auditory ventral-cord neurones were studied by single cell recordings.These neurones all receive inputs from both vibratory and auditory receptors. Nevertheless, they can be classified into “V neurones” responding preferentially to vibration stimuli, “VS neurones” responding to vibration and airborne sound, and “S neurones” responding preferentially to airborne sound. In every group, there are several types with different physiological properties, normally represented by one neurone on each body side.In Locusta and in the tettigoniid species, the same physiological types of vibratory/auditory neurones were found, although there are differences in the synaptic connectivity of the vibration receptors of the different legs. In Locusta, the middle leg receptors have the strongest influence on the generation of suprathreshold responses of the central neurones, whereas in the tettigoniids the receptors of the ipsilateral fore leg are the most influential.Two of the V neurones receive inputs mainly from campaniform sensilla and other low-frequency vibration receptors, the other V and VS neurones are mainly influenced by the subgenual receptors. Central information processing results in preferential responses to different frequency/intensity ranges in different neurones.Most VS neurone types show the same response characteristics (e.g. time pattern of response, habituation) either to vibration or to airborne-sound stimuli. Simultaneous presentation of both stimuli leads to qualitative changes in the response characteristics. Therefore, the co-processing of auditory and vibratory signals seems to be very important in the acoustic behaviour of grasshoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号