首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.  相似文献   

2.
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.  相似文献   

3.
Miao Y  Yan PK  Kim H  Hwang I  Jiang L 《Plant physiology》2006,142(3):945-962
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.  相似文献   

4.
Brefeldin A (BFA) treatment stops secretion and leads to the resorption of much of the Golgi apparatus into the endoplasmic reticulum. This effect is reversible upon washing out the drug, providing a situation for studying Golgi biogenesis. In this investigation Golgi regeneration in synchronized tobacco BY-2 cells was followed by electron microscopy and by the immunofluorescence detection of ARF1, which localizes to the rims of Golgi cisternae and serves as an indicator of COPI vesiculation. Beginning as clusters of vesicles that are COPI positive, mini-Golgi stacks first become recognizable 60 min after BFA washout. They continue to increase in terms of numbers and length of cisternae for a further 90 min before overshooting the size of control Golgi stacks. As a result, increasing numbers of dividing Golgi stacks were observed 120 min after BFA washout. BFA-regeneration experiments performed on cells treated with BFA (10 microg mL(-1)) for only short periods (30-45 min) showed that the formation of ER-Golgi hybrid structures, once initiated by BFA treatment, is an irreversible process, the further incorporation of Golgi membranes into the ER continuing during a subsequent drug washout. Application of the protein kinase A inhibitor H-89, which effectively blocks the reassembly of the Golgi apparatus in mammalian cells, also prevented stack regeneration in BY-2 cells, but only at very high, almost toxic concentrations (>200 microm). Our data suggest that under normal conditions mitosis-related Golgi stack duplication may likely occur via cisternal growth followed by fission.  相似文献   

5.
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.  相似文献   

6.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells by inhibiting vesicle formation at the Golgi apparatus. Although this toxin has been used in many studies, its effects on plant cells are still shrouded in controversy. We have reinvestigated the early responses of plant cells to BFA with novel tools, namely, tobacco Bright Yellow 2 (BY-2) suspension-cultured cells expressing an in vivo green fluorescent protein-Golgi marker, electron microscopy of high-pressure frozen/freeze-substituted cells, and antisera against Atgamma-COP, a component of COPI coats, and AtArf1, the GTPase necessary for COPI coat assembly. The first effect of 10 microg/mL BFA on BY-2 cells was to induce in <5 min the complete loss of vesicle-forming Atgamma-COP from Golgi cisternae. During the subsequent 15 to 20 min, this block in Golgi-based vesicle formation led to a series of sequential changes in Golgi architecture, the loss of distinct Golgi stacks, and the formation of an endoplasmic reticulum (ER)-Golgi hybrid compartment with stacked domains. These secondary effects appear to depend in part on stabilizing intercisternal filaments and include the continued maturation of cis- and medial cisternae into trans-Golgi cisternae, as predicted by the cisternal progression model, the shedding of trans-Golgi network cisternae, the fusion of individual Golgi cisternae with the ER, and the formation of large ER-Golgi hybrid stacks. Prolonged exposure of the BY-2 cells to BFA led to the transformation of the ER-Golgi hybrid compartment into a sponge-like structure that does not resemble normal ER. Thus, although the initial effects of BFA on plant cells are the same as those described for mammalian cells, the secondary and tertiary effects have drastically different morphological manifestations. These results indicate that, despite a number of similarities in the trafficking machinery with other eukaryotes, there are fundamental differences in the functional architecture and properties of the plant Golgi apparatus that are the cause for the unique responses of the plant secretory pathway to BFA.  相似文献   

7.
The bean lectin phytohemagglutinin (PHA) was expressed in transgenic suspension-cultured BY-2 tobacco cells simultaneously with another recombinant vacuolar protein, the sweet potato sporamin. In contrast to previous observations in different transgenic plant systems when expressed in BY-2 tobacco cells, phytohemagglutinin is mostly but not exclusively targeted to the vacuole. Indeed, a small amount of recombinant phytohemagglutinin is secreted into the culture medium of tobacco cells. Furthermore part of this extracellular phytohemagglutinin has no lectin activity and presents an abnormal glycosylation consistent with higher accessibility of glycans N-linked to these extracellular phytohemagglutinin forms. Phytohemagglutinin secretion occurs regardless of recombinant protein expression level. Consequently, missorting in this case is due to an abnormal phytohemagglutinin conformation or oligomerization rather than to receptor saturation. The treatment of BY-2 cells with drugs, such as monensin and wortmannin, increases even more the transport of phytohemagglutinin to the cell surface through a general inhibition of the sorting mechanisms of vacuolar proteins. The sensitivity to wortmannin is similar for the sorting of phytohemagglutinin and endogenous tobacco chitinase and β-1,3-glucanase, suggesting that phytohemagglutinin and COOH-terminal propeptide mediated vacuolar sorting share similar mechanisms. A characterization of glycans N-linked to extracellular phytohemagglutinin secreted by monensin- or wortmannin-treated transgenic tobacco cells illustrates that in contrast with monensin, wortmannin completely inhibits the sorting of vacuolar proteins without having any effect on the efficiency of Golgi processing enzymes.  相似文献   

8.
We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.  相似文献   

9.
The plant secretory and endocytic pathways consist of several functionally distinct membrane-bounded compartments. The ultra structures of the endoplasmic reticulum, the Golgi apparatus, and central vacuoles have been well characterized via traditional structural electron microscope (EM). However, the identification of plant prevacuolar compartments (PVCs) and early endosomes (EEs) had not been achieved until more recently because of the lack of specific markers for these organelles. Recent development of fluorescent reporters for PVCs and EEs expressing in transgenic tobacco BY-2 cells and Arabidopsis plants has allowed their dynamic characterization in living cells via confocal microscopy and drug treatment, which led to their subsequent morphological identification via structural and immunogold EM. Thus, in this review, we will use our studies on PVCs and EEs as examples to present an efficient approach for organelle identification in plant cells via primary characterization of fluorescent-marked organelles in living cells and their dynamic response to drug treatments, which then serves as the basis for subsequent immunogold and structural EM studies for organelle identification. Such strategy thus represents a powerful approach in future research for the identification of novel organelles and transport vesicles in plant cells.  相似文献   

10.
We have fused the signal anchor sequences of a rat sialyl transferase and a human galactosyl transferase along with the Arabidopsis homologue of the yeast HDEL receptor (AtERD2) to the jellyfish green fluorescent protein (GFP) and transiently expressed the chimeric genes in tobacco leaves. All constructs targeted the Golgi apparatus and co-expression with DsRed fusions along with immunolabelling of stably transformed BY2 cells indicated that the fusion proteins located all Golgi stacks. Exposure of tissue to brefeldin A (BFA) resulted in the reversible redistribution of ST-GFP into the endoplasmic reticulum. This effect occurred in the presence of a protein synthesis inhibitor and also in the absence of microtubules or actin filaments. Likewise, reformation of Golgi stacks on removal of BFA was not dependent on either protein synthesis or the cytoskeleton. These data suggest that ER to Golgi transport in the cell types observed does not require cytoskeletal-based mechanochemical motor systems. However, expression of an inhibitory mutant of Arabidopsis Rab 1b (AtRab1b(N121I) significantly slowed down the recovery of Golgi fluorescence in BFA treated cells indicating a role for Rab1 in regulating ER to Golgi anterograde transport.  相似文献   

11.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

12.
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.  相似文献   

13.
Receptors for acid hydrolases destined for the lytic compartment in yeast and mammalian cells are retrieved from intermediate, endosomal organelles with the help of a pentameric protein complex called the retromer. We cloned the Arabidopsis thaliana homologs of the three yeast proteins (Vps35, Vps29, and Vps26) constituting the larger subunit of retromer and prepared antisera against them. With these antibodies, we demonstrated the presence of a retromer-like protein complex in salt extracts prepared from Arabidopsis microsomes. This complex is associated with membranes that coequilibrate with prevacuolar compartment markers and with high-density sedimenting membranes. Immunogold negative staining identified these membranes as 90-nm-diameter coated microvesicles. Confocal laser scanning immunofluorescence studies performed on tobacco (Nicotiana tabacum) BY-2 cells revealed high degrees of colabeling between all three retromer antisera and the prevacuolar compartment (PVC) markers PEP12 and vacuolar sorting receptor VSR(At-1). The presence of plant retromer at the surface of multivesicular bodies was also demonstrated by immunogold labeling of sections obtained from high-pressure frozen/freeze-substituted specimens. Treatment of BY-2 cells with wortmannin led to swelling of the PVC and a separation of the VPS35 and VSR signals. Preliminary data suggesting that retromer interacts with the cytosolic domain of a VSR were obtained by immunoprecipitation experiments performed on detergent-solubilized microsomes with Vps35 antibodies.  相似文献   

14.
Oryzalin is a much-used pre-emergence herbicide which causes microtubules (Mt) to depolymerize. Here, we document that this dinitroaniline herbicide also leads to characteristic changes in the morphology of the endoplasmic reticulum (ER) and Golgi apparatus. These effects, which are reversible upon washing out the herbicide, are already elicited at low concentrations (2 μM) and become most pronounced at 20 μM. For our studies, we have employed roots of Arabidopsis thaliana, tobacco leaf epidermal cells, and BY-2 suspension cultures, all expressing the luminal ER marker GFP::HDEL. In all cell types, the typical cortical network of the ER assumed a pronounced nodulated morphology with increasing oryzalin concentrations. This effect was enhanced through subsequent application of brefeldin A (BFA). Thin sections of Arabidopsis roots observed in the electron microscope revealed the nodules to consist of a mass of anastomosing ER tubules. Oryzalin also caused the cisternae in Golgi stacks to increase in number but reduced their diameter. Oryzalin retarded ER mobility but did not prevent latrunculin B-induced clustering of Golgi stacks on islands of cisternal ER. While the mechanism underlying these changes in endomembranes remains unknown, it is specific for oryzalin since these effects were not elicited with other Mt-depolymerizing herbicides, e.g., trifluralin, amiprophosmethyl, or colchicine.  相似文献   

15.
The effects of 1-butanol on the organelles of the early secretory pathway in tobacco BY-2 cells have been examined, because this primary alcohol is known to interfere with phospholipase D an enzyme whose activity contributes to COPI-vesicle formation. Since the fungal lactone Brefeldin A (BFA) also prevents COPI-vesicle production by the Golgi apparatus, the sequential and simultaneous application of these two inhibitors was also investigated. 1-Butanol, but not 2-butanol caused rapid changes in the morphology of the BY-2 Golgi apparatus resulting in extended curved cisternae. By contrast with BFA-treated cells, ER cisternae did not attach laterally to these structures, and ER-Golgi fusion hybrids were not obtained with 1-butanol. However, immunofluorescence microscopy revealed that 1-butanol, like BFA, elicited the release of the GTPase ARF1 from Golgi membranes. Washing out the butanol resulted in re-attachment of ARF1 and a recovery of Golgi stack morphology. BY-2 cells treated sequentially with 1-butanol then BFA (each 30 min), did not reveal any BFA-typical changes in Golgi structure. Cells treated first with BFA, then 1-butanol retained the typical ER-Golgi sandwich morphology induced by BFA, but were larger. When 1-butanol and BFA were added together (for a 30 min period), even larger Golgi aggregates were formed with, again, no ER attachments. Thus, although both inhibitors had the Golgi apparatus as their principle cytological target and both interfere with coatomer attachment, they differ in their ability to induce an interaction with the ER.  相似文献   

16.
In plant systems, the green fluorescent protein (GFP) is increasingly used as a marker to study dynamics of the secretory apparatus using fluorescence microscopy. The purpose of this study was to immunogold localize the GFP, at the electron microscopic level, in a line of tobacco BY-2-cultured cells, expressing a GFP-tagged Golgi glycosyltransferase. To this end we have developed a simple, one-step chemical fixation method that allow good structural preservation and specific labeling with anti-GFP antibodies. Using this method, we have been able to show that an N-glycan GFP-tagged xylosyltransferase is specifically associated with Golgi stacks of BY-2 transformed cells and is preferentially located in medial cisternae. As an alternative to cryofixation methods, such as high-pressure freezing, which requires specialized and expensive equipment not available in most laboratories, this method offers researchers the opportunity to investigate GFP-tagged proteins of the endomembrane system in tobacco BY-2 cells.  相似文献   

17.
Summary Brefeldin A (BFA) induces a major aggregation of the Golgi apparatus (GA) in root cells followed by a complete, but reversible, vesiculation of the Golgi stacks which form two or more BFA compartments in the cytosol. This effect is monitored by the immunofluorescence of a Golgi antigen stained with a monoclonal antibody JIM 84, and by transmission electron microscopy. Depolymerisation of the microtubule cytoskeleton after oryzalin or colchicine treatment does not disturb the three dimensional organisation of the GA in control cells and does not affect any BFA induced Golgi stack movements. After disruption of the actin cytoskeleton with cytochalasin D many aggregates of Golgi stacks can be observed in root cells and these are sensitive to BFA treatment, forming multiple BFA compartments. N-ethyl-maleimide has no effect on the organisation of the GA in control roots but totally inhibits the action of BFA. Thus, it appears that spatial organisation of the GA and the BFA induced Golgi stack movements are actin dependent whilst BFA induced vesiculation of the GA is a structurally separate event.  相似文献   

18.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

19.
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.  相似文献   

20.
We screened a panel of compounds derived from Exo2 - a drug that perturbs post-Golgi compartments and trafficking in mammalian cells - for their effect on the secretory pathway in Arabidopsis root epidermal cells. While Exo2 and most related compounds had no significant effect, one Exo2 derivative, named LG8, induced severe morphological alterations in both the Golgi (at high concentrations) and the endoplasmic reticulum (ER). LG8 causes the ER to form foci of interconnecting tubules, which at the ultrastructural level appear similar to those previously reported in Arabidopsis roots after treatment with the herbicide oryzalin. In cotyledonary leaves, LG8 causes redistribution of a trans Golgi network (TGN) marker to the vacuole. LG8 affects the anterograde secretory pathway by inducing secretion of vacuolar cargo and preventing the brassinosteroid receptor BRI1 from reaching the plasma membrane. Uptake and arrival at the TGN of the endocytic marker FM4-64 is not affected. Unlike the ADP ribosylation factor-GTP exchange factor (ARF-GEF) inhibitor brefeldin A (BFA), LG8 affects these post-Golgi events without causing the formation of BFA bodies. Up to concentrations of 50 μm, the effects of LG8 are reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号