首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

2.
The mechanism for oxytocin's (OT) stimulation of PGF(2alpha) secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca(2+) and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca(2+) by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF(2alpha) release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF(2alpha) secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) release. These results are consistent with the hypothesis that OT mobilizes Ca(2+) to activate a Ca(2+)-dependent PKC pathway to promote PGF(2alpha) secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

3.
Oxytocin at a physiological concentration stimulated the immediate release of free arachidonic acid from dispersed human decidual cells in a perfusion system. This indicates that oxytocin activates phospholipase(s) thus enhancing prostaglandin synthesis. The effect of oxytocin on the release of [3H]-arachidonic acid from decidual cells of women in labor was significantly greater (1036 +/- 207, mean dpm +/- SEM, n = 23) than from those of women not-in-labor (505 +/- 121 dpm, n = 12) or with endometrial cells of non-pregnant women (711 +/- 210 dpm, n = 18), and correlates well with reported oxytocin receptor concentrations in these tissues. These new findings are consistent with a role for endogenous oxytocin in stimulating prostaglandin synthesis at the onset of parturition.  相似文献   

4.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

5.
In the dog luteolysis is not affected by hysterectomy. This observation led to the hypothesis that paracrine/autocrine rather than endocrine mechanisms of PGF2alpha are responsible for luteal regression in the dioestric bitch. The present experiments tested for the capacity of canine CL to produce and respond to PGF2alpha by qualitatively and quantitatively determining the expressions of PGFS, the enzyme converting PGH2 into PGF2alpha, and the PGF2alpha-receptor (FP) in CL of non-pregnant dogs during dioestrus. Canine PGFS and FP were isolated and cloned; both genes show a high homology (82-94%) when compared to those of other species. Relatively weak FP mRNA expression was detected on day 5 of dioestrus. It had increased by day 25 and remained constant thereafter. In situ hybridization (ISH) localized FP solely to the cytoplasm of the luteal cells, suggesting that these cells are the only luteal targets of PGF2alpha in this species. Only negative results were obtained for the expression of PGFS in canine CL by routine qualitative RT-PCR. When Real Time (TaqMan) PCR was applied, repetitively more negative than positive results were obtained at all timepoints. Any positive measurements observed at any point were neither repeatable nor related to the stage of dioestrus. This led us to conclude that expression of PGFS is either absent or present at very low level only. These data suggest that luteal regression in non-pregnant bitches is not modulated by PGF2alpha. However, the FP seems to be constitutionally expressed, explaining the receptivity of canine CL to exogenous PGF2alpha.  相似文献   

6.
Despite a key role in the pathogenesis of menorrhagia, the factors controlling the uterine vascular bed are poorly understood. This study has assessed the effects of the potent vasoconstrictor endothelin (ET)-1 on prostaglandin (PG) release from human endometrial explants in short-term culture. There was no significant difference between the production of PGF2 alpha in proliferative and secretory tissue (1709 and 2434 pg/mg/h--median values, range 70,3745 and 219,6700 pg/mg/h). Less PGE was released than PGF2 alpha, and the amount did not vary with the phase of the menstrual cycle (308 and 296 pg/mg/h (range 65,387 and 105,429) for proliferative and secretory tissue). ET-1 (10 and 100 nM) and arachidonic acid (AA, 30 microM), stimulated PGF2 alpha release from proliferative, but not secretory endometrium, by 78%, 86% (P less than 0.01) and 80% respectively, compared with control tissue. No effect was seen on PGE release. ET-1 may play a role in the local control of the endometrial vascular bed either directly, or via the release of PGF2 alpha.  相似文献   

7.
It has been well demonstrated that tumor necrosis factor-alpha (TNFalpha) stimulates prostaglandin (PG) F2alpha secretion by bovine corpus luteum (CL) in vitro. The objective of the present study was to clarify the intracellular signaling pathway of TNFalpha to stimulate PGF2alpha production in cultured bovine luteal cells. Bovine luteal cells that were obtained from mid- (days 8-12 after ovulation) CL were incubated with TNFalpha (0.6 nM) and/or various compounds as follows: U-73122 (an inhibitor of phospholipase [PL] C), ACA (an inhibitor of PL-A2), H-89 (an inhibitor of protein kinase [PK] A), calphostin C (an inhibitor of PK-C), L-NAME/L-NORG (inhibitors of nitric oxide synthase), and PD98059 (an inhibitor of mitogen-activated protein kinase [MAPK] kinase). Although U-73122 (0. 1-10 microM), H-89 (0.1-10 microM), calphostin C (0.01-1 microM) and L-NAME/L-NORG (1-100 microM) did not affect TNFalpha-induced PGF2alpha secretion by the cultured cells, ACA (1-100 microM) and PD98059 (0.1-100 microM) inhibited TNFalpha-stimulated PGF2alpha secretion by the cells in a dose-dependent fashion (P < 0.05 or lower). These findings suggest that TNFalpha activates the MAPK and PL-A2 pathways in bovine luteal cells to stimulate PGF2alpha secretion.  相似文献   

8.
The concentrations of prostaglandin F2 alpha (PGF2 alpha) and E2 (PGE2) in menstrual fluid collected daily from 13 women with primary dysmenorrhoea and 11 matched controls, were compared with the pattern of uterine contractility during the hour following the menstrual fluid collection. The intra-uterine pressure (IUP) was measured using a micro-transducer catheter and the tracings analysed. On Day 2 the concentration of PGF2 alpha correlated with the peak area, but not with amplitude, duration or rate of contraction. These findings add additional support to the hypothesis that increased production of PGF2 alpha could contribute to the increased uterine contractility in primary dysmenorrhoea.  相似文献   

9.
The effects of PGF2 alpha on biliary secretion of rats have been investigated. PGF2 alpha' at the dose of 100 micrograms/kg, produces a choleretic activity during the first 20 min after the injection. The effects are discussed by comparison to those observed in dogs, where a mechanism involving the canicolar level has been hypothesized.  相似文献   

10.
The purpose of this experiment was to determine whether the ability of oxytocin to stimulate uterine secretion of prostaglandin F2 alpha (PGF2 alpha) and luteal secretion of progesterone changes during the porcine estrous cycle. Nineteen multiparous sows were observed for estrus. After one estrous cycle of normal length, sows were assigned randomly to receive an injection of oxytocin (30 IU, i.v.) in the EARLY (Days 4-6; n = 6), MID (Days 9-11; n = 7), or LATE (Day 15; n = 6) stage of the estrous cycle. Concentrations of 13, 14-dihydro-15-keto-PGF2 alpha (PGFM) and progesterone were determined in jugular venous serum samples collected at -60, -45, -30, -15, 0, 2, 5, 10, 15, 30, 45, 60, 90, and 120 min after injection of oxytocin. The magnitudes of the PGFM and progesterone responses and the area under the respective response curves (AUC) were calculated for each sow. Concentrations of PGFM did not change in response to oxytocin administered during the EARLY or MID portions of the estrous cycle. Concentrations increased rapidly in 4 of 6 sows that received oxytocin LATE in the estrous cycle. Both magnitude and AUC were greater LATE in the estrous cycle than at either EARLY or MID cycle (p less than 0.05). Thus, uterine secretory responsiveness to oxytocin develops between Days 11 and 15 postestrus in the sow. For progesterone, a transient increase was observed immediately following injection of oxytocin at MID cycle (p less than 0.05), but not at the other times examined. Therefore, oxytocin appears to be capable of stimulating secretion of progesterone from the functionally mature corpus luteum.  相似文献   

11.
Effect of prostaglandin F2 alpha on the secretion of human prolactin   总被引:1,自引:0,他引:1  
This study examines the role of PGF2a (prostaglandin F2alpha) in increasing the secretion rate of human prolactin. 11 women (mean gestational period, 18 weeks) seeking pregnancy termination were divided into 4 groups: 1) Group 1 consisted of 6 women who received 30 mg initially of PGF2a injected intramuscularly and an additional 15 mg after 24 hours if abortion had not occured; mean induction to termination period was 38 hours; 2) Group 2 comprised of 3 women who received PGF2a (500-1500 ug) via the transcervical route at 1 to 2 hourly interval; average number of injections was 20; mean induction to termination period, 24 hours; 3) Group 3 had 2 women receiving hypertonic saline by intraamniotic injection; mean induction to termination period was 51 hours; 4) Group 4 had 4 women who served as controls; mean observation period, 20 hours. Venous blood samples were heparinized in tubes at intervals of 2 to 3 hours. A homologous radioimmunoassay using highly purified human prolactin (for iodination and standards) plus rabbit antihuman prolactin measured serum prolactin. Spikes of serum prolactin up to 550 ng/ml were observed at irregular intervals in 5 women in Group 1; the spikes were less frequent and of smaller amplitude in Groups 3 and 4. The increase in serum prolactin was dramatic and more sustained in Group 2 patients and peaked towards the end of the prostaglandin infusion. Serum prolactin of Group 2 patients were significantly higher than those of Groups 3 and 4 (p0.01). 5 of 9 women whose pregnancies were terminated by PGF2a lactated. However, there was no significant difference between the mean serum prolactin levels in women who lactated (136 ng/ml) and those who did not (120 ng/ml). Although PGF2a is not a lactogenic hormone, this study shows that PGF2a stimulates the secretion of human prolactin during second trimester pregnancy. The fact that the transcervical route caused a significant increase in serum prolactin and the intraamniotic route did not is attributed to the increased systemic absorption of PGF2a following transcervical administration. No correlation was seen between the presence or absence of lactation and the serum prolactin level following pregnancy termination with PGF2a.  相似文献   

12.
Five normal estrous cycling multiparous non-lactating Brahman cows were utilized to determine if pregnancy-specific protein B (PSPB) would alter prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE) synthesis/release by endometrial tissue. The uterine horn ipsilateral to the corpus luteum was excised on Day 16 of the estrous cycle. Endometrial tissue (200 mg wet wt) was cultured in Nutrient Mixture F-10 medium in a perifusion system. The tissue and medium were aerated with 95% O2: 5% CO2 and temperature was maintained at 39 degrees C. The medium flow rate was 100 microliters/min and fractions were collected at 20 min intervals. After a 120 min settling period, tissue culture continued with: 1) control (medium only); 2) 2 micrograms [Asu1,6]-oxytocin/ml medium for 1 h; 3) 4 or 8 micrograms PSPB/ml medium for 2 h; or 4) 4 or 8 micrograms PSPB/ml medium for 2 h plus 2 micrograms oxytocin/ml medium during the second h. Differences in PGF and PGE secretion rate were not found between 4 and 8 micrograms PSPB. Therefore, groups were combined and data were analyzed according to tissue not receiving PSPB (control); receiving PSPB and receiving PSPB plus oxytocin. A nonsignificant rise (p greater than 0.10) in PGF secretion was observed in response to PSPB and PSPB plus oxytocin above the control by the end of the perifusion period (263.7 +/- 41.7, 220.0 +/- 41.7 and 166.1 +/- 41.7 pg/(100 mg tissue/min), respectively). Treatment with PSPB alone elevated (p less than 0.05) PGE secretion rate above control by 100 and 160 min post-removal of PSPB treatment. Treatment with PSPB plus oxytocin elevated (p less than 0.05) PGE release above control by 20 min after starting oxytocin treatment and continued throughout the duration of the perifusion. Pregnancy-specific protein B plus oxytocin-induced PGE release was greater (p less than 0.05) than PSPB alone after initiating the oxytocin treatment until 20 min after removal of the treatments. However, no further differences between PSPB alone and PSPB plus oxytocin treatments were detected throughout the remainder of the perifusion period. It appears that PSPB tends to elevate PGF release and significantly elevates PGE release from Day 16 endometrial tissue.  相似文献   

13.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

14.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

15.
The binding of high specific activity 3H-prostaglandin F2 alpha to membranes derived from human prostate tissue is described. Binding is specific for PGF2 alpha and is readily displaced by cold PGF2 alpha. The influence of testosterone and lactogen on the binding of the prostaglandin is investigated. Testosterone appears to enhance binding while the binding observed in the presence of lactogen is difficult to interpret.  相似文献   

16.
Past studies of uterine prostaglandin (PGs) and pig reproduction have focused on endometrial rather than myometrial PGs. This study documents the synthesis and secretion of myometrial prostaglandins (PGs) in pigs and the involvement of oxytocin (OT) in these processes. Cyclooxygenase-2 (COX-2) expression was similar in myometrial explants from cyclic and pregnant pigs (days 14-16) and OT (10(-7) M) in vitro significantly increased COX-2 protein regardless of reproductive state. Basal expression of prostaglandin E2 synthase (PGES) was higher during pregnancy than during luteolysis. Conversely, prostaglandin F synthase (PGFS) was highest during luteolysis and lower in myometrium from gravid animals. OT had no influence on the expression of PGES and PGFS. In another tissue culture experiment, myometrial slices produced more PGE2 than PGF2alpha regardless of reproductive state of the female. OT stimulated PGE2 production in myometrium harvested during luteolysis and increased PGF2alpha production in all tissues examined. Progesterone (P4; 10(-5) M) blocked stimulatory effect of OT on myometrial PG release. Myometrial OTr mRNA was higher (P=0.03) during luteolysis than during pregnancy. In conclusion: (1) oxytocin increases myometrial COX-2 expression, but does not influence the expression of terminal enzymes of PGs synthesis (PGES and PGFS); (2) porcine myometrium preferentially produces PGs during early pregnancy and secretes more PGE2 than PGF2alpha; (3) myometrial OT and OTr support secretion of PGs from myometrium during luteolysis.  相似文献   

17.
18.
The effect of progesterone on oxytocin-induced secretion of prostaglandin (PG) F(2alpha) from bovine endometrial tissue explants was examined. Endometrial tissue from the late luteal phase were preincubated for 20 h in control medium. Explants were then treated for 6 h with control medium, oxytocin (10(-7) M), progesterone (10(-5) M), or both hormones. Oxytocin increased the medium concentration of 13,14-dihydro-15-keto-PGF(2alpha), whereas progesterone completely suppressed the stimulatory effect of oxytocin. In experiment 2, isolated endometrial epithelial cells were incubated with progesterone (10(-5) M), oxytocin (10(-7) M), and combinations of these hormones with or without actinomycin D (1 ng/ml). Only oxytocin stimulated secretion of PGF(2alpha), and this response was suppressed by progesterone. Oxytocin induced a rapid increase in intracellular concentrations of Ca(2+) detected within 1 min of exposure of epithelial cells from the same cows. Progesterone pretreatment diminished this response. In experiment 3, direct effects of progesterone (2 nM-20 microM) on binding of (3)H-oxytocin to the membrane preparation from epithelial cells were determined by saturation analysis. Oxytocin binding was suppressed by progesterone at every dosage tested. Progesterone is capable of suppressing the ability of oxytocin to induce endometrial secretion of PGF(2alpha). This effect appears to be mediated through a direct interference in the interaction of oxytocin with its own receptor.  相似文献   

19.
Cell culture models implicate increased nitric oxide (NO) synthesis as a cause of mucosal hyperpermeability in intestinal epithelial infection. NO may also mediate a multitude of subepithelial events, including activation of cyclooxygenases. We examined whether NO promotes barrier function via prostaglandin synthesis using Cryptosporidium parvum-infected ileal epithelium in residence with an intact submucosa. Expression of NO synthase (NOS) isoforms was examined by real-time RT-PCR of ileal mucosa from control and C. parvum-infected piglets. The isoforms mediating and mechanism of NO action on barrier function were assessed by measuring transepithelial resistance (TER) and eicosanoid synthesis by ileal mucosa mounted in Ussing chambers in the presence of selective and nonselective NOS inhibitors and after rescue with exogenous prostaglandins. C. parvum infection results in induction of mucosal inducible NOS (iNOS), increased synthesis of NO and PGE2, and increased mucosal permeability. Nonselective inhibition of NOS (NG-nitro-L-arginine methyl ester) inhibited prostaglandin synthesis, resulting in further increases in paracellular permeability. Baseline permeability was restored in the absence of NO by exogenous PGE2. Selective inhibition of iNOS [L-N6-(1-iminoethyl)-L-lysine] accounted for approximately 50% of NOS-dependent PGE2 synthesis and TER. Using an entire intestinal mucosa, we have demonstrated for the first time that NO serves as a proximal mediator of PGE2 synthesis and barrier function in C. parvum infection. Expression of iNOS by infected mucosa was without detriment to overall barrier function and may serve to promote clearance of infected enterocytes.  相似文献   

20.
Regulators of G protein signaling (RGS proteins) interact with Galpha(q) and Galpha(i) and accelerate GTPase activity. These proteins have been characterized only within the past few years, so our understanding of their importance is still preliminary. We examined the effect of oxytocin on RGS2 mRNA expression to help determine the role of RGS proteins in oxytocin signaling in human myometrial cells in primary culture. Oxytocin increased RGS2 mRNA concentration maximally by 1 or 2 h in a dose-dependent and agonist-specific manner. RGS2 mRNA levels were also elevated by treatment with Ca(2+) ionophore, phorbol ester, or forskolin. Oxytocin's effects were completely inhibited by an intracellular Ca(2+) chelator and partially blocked by a protein kinase C inhibitor, indicating that intracellular Ca(2+) concentration is the primary signal for oxytocin elevation of RGS2 mRNA levels. Use of pharmacological inhibitors indicated that part of oxytocin-stimulated RGS2 mRNA expression is mediated by G(i)/tyrosine kinase activities. Although oxytocin does not stimulate increases in intracellular cAMP concentration, agents that elevate intracellular cAMP concentrations and cause myometrial relaxation may possibly cause heterologous desensitization to oxytocin via RGS2 expression. These results suggest that RGS2 may be important in regulating the myometrial response to oxytocin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号