首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Escherichia coli contains at least five ATP-dependent DEAD-box RNA helicases which may play important roles in macromolecular metabolism, especially in translation and mRNA decay. Here we demonstrate that one member of this family, CsdA, whose expression is induced by cold shock, interacts physically and functionally with RNase E. Three independent approaches show that after a shift of cultures to 15 degrees C, CsdA co-purifies with RNase E and other components of the RNA degradosome. Moreover, functional assays using reconstituted minimal degradosomes prepared from purified components in vitro show that CsdA can fully replace the resident RNA helicase of the RNA degradosome, RhlB. In addition, under these conditions, CsdA displays RNA-dependent ATPase activity. Taken together, our data are consistent with a model in which CsdA accumulates during the early stages of cold acclimatization and subsequently assembles into degradosomes with RNase E synthesized in cold-adapted cultures. These findings show that the RNA degradosome is a flexible macromolecular machine capable of adapting to altered environmental conditions.  相似文献   

3.
The non-catalytic region of Escherichia coli RNase E contains a protein scaffold that binds to the other components of the RNA degradosome. Alanine scanning yielded a mutation, R730A, that disrupts the interaction between RNase E and the DEAD-box RNA helicase, RhlB. We show that three other DEAD-box helicases, SrmB, RhlE and CsdA also bind to RNase E in vitro. Their binding differs from that of RhlB because it is not affected by the R730A mutation. Furthermore, the deletion of residues 791-843, which does not affect RhlB binding, disrupts the binding of SrmB, RhlE and CsdA. Therefore, RNase E has at least two RNA helicase binding sites. Reconstitution of a complex containing the protein scaffold of RNase E, PNPase and RhlE shows that RhlE can furnish an ATP-dependent activity that facilitates the degradation of structured RNA by PNPase. Thus, RhlE can replace the function of RhlB in vitro. The results in the accompanying article show that CsdA can also replace RhlB in vitro. Thus, RhlB, RhlE and CsdA are interchangeable in in vitro RNA degradation assays.  相似文献   

4.
Upon cold shock, Escherichia coli cell growth transiently stops. During this acclimation phase, specific cold shock proteins (CSPs) are highly induced. At the end of the acclimation phase, their synthesis is reduced to new basal levels, while the non-cold shock protein synthesis is resumed, resulting in cell growth reinitiation. Here, we report that polynucleotide phosphorylase (PNPase) is required to repress CSP production at the end of the acclimation phase. A pnp mutant, upon cold shock, maintained a high level of CSPs even after 24 h. PNPase was found to be essential for selective degradation of CSP mRNAs at 15 degrees C. In a poly(A) polymerase mutant and a CsdA RNA helicase mutant, CSP expression upon cold shock was significantly prolonged, indicating that PNPase in concert with poly(A) polymerase and CsdA RNA helicase plays a critical role in cold shock adaptation.  相似文献   

5.
Leaderless mRNAs beginning with the AUG initiating codon occur in all kingdoms of life. It has been previously reported that translation of the leaderless cI mRNA is stimulated in an Escherichia coli rpsB mutant deficient in ribosomal protein S2. Here, we have studied this phenomenon at the molecular level by making use of an E. coli rpsB(ts) mutant. The analysis of the ribosomes isolated under the non-permissive conditions revealed that in addition to ribosomal protein S2, ribosomal protein S1 was absent, demonstrating that S2 is essential for binding of S1 to the 30S ribosomal subunit. In vitro translation assays and the selective translation of a leaderless mRNA in vivo at the non-permissive temperature corroborate and extend previous in vitro ribosome binding studies in that S1 is indeed dispensable for translation of leaderless mRNAs. The deaD/csdA gene, encoding the "DeaD/CsdA" DEAD-box helicase, has been isolated as a multicopy suppressor of rpsB(ts) mutations. Here, we show that expression of a plasmid-borne DeaD/CsdA gene restores both S1 and S2 on the ribosome at the non-permissive temperature in the rpsB(ts) strain, which in turn leads to suppression of the translational defect affecting canonical mRNSa. These data are discussed in terms of a model, wherein DeaD/CsdA is involved in ribosome biogenesis rather than acting directly on mRNA.  相似文献   

6.
CsdA, a DEAD-box protein from Escherichia coli, has been proposed to participate in a variety of processes, such as translation initiation, gene regulation after cold-shock, mRNA decay and biogenesis of the small ribosomal subunit. Whether the protein really plays a direct role in these multiple processes is however, not clear. Here, we show that CsdA is involved in the biogenesis of the large rather than the small ribosomal subunit. Deletion of the csdA gene leads to a deficit in free 50S subunits at low temperatures and to the accumulation of a new particle sedimenting around 40S. Analysis of the RNA and protein contents of this particle indicates that it corresponds to a mis-assembled large subunit. Sucrose gradient fractionation shows that in wild-type cells CsdA associates mainly with a pre50S particle. Presumably the RNA helicase activity of CsdA permits a structural rearrangement during 50S biogenesis at low temperature. We showed previously that SrmB, another DEAD-box RNA helicase, is also involved in 50S assembly in E.coli. Our results suggest that CsdA is required at a later step than SrmB. However, over-expression of CsdA corrects the ribosome defect of the srmB-deleted strain, indicating that some functional overlap exists between the two proteins.  相似文献   

7.
The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3' or 5' extensions at 15 degrees C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157-->Gln) had no detectible helicase or ATPase activity at 15 degrees C in vitro. A plasmid encoding the DQAD variant was also unable to suppress the impaired growth of the csdA null mutant at 15 degrees C. Plasmid-encoded CsdADelta444, which lacks most of the carboxy-terminal extension, enhanced the growth of a csdA null mutant at 25 degrees C but not at 15 degrees C; this truncated protein also has limited in vitro activity at 15 degrees C. These results support the physiological function of CsdA as a DEAD box ATP-dependent RNA helicase at low temperature.  相似文献   

8.
Endoribonuclease E, a key enzyme involved in RNA decay and processing in bacteria, organizes a protein complex called degradosome. In Escherichia coli, Rhodobacter capsulatus, and Streptomyces coelicolor, RNase E interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicase(s), and additional factors in an RNA-degrading complex. To characterize the degradosome of the psychrotrophic bacterium Pseudomonas syringae Lz4W, RNase E was enriched by cation exchange chromatography and fractionation in a glycerol density gradient. Most surprisingly, the hydrolytic exoribonuclease RNase R was found to co-purify with RNase E. Co-immunoprecipitation and Ni(2+)-affinity pull-down experiments confirmed the specific interaction between RNase R and RNase E. Additionally, the DEAD-box helicase RhlE was identified as part of this protein complex. Fractions comprising the three proteins showed RNase E and RNase R activity and efficiently degraded a synthetic stem-loop containing RNA in the presence of ATP. The unexpected association of RNase R with RNase E and RhlE in an RNA-degrading complex indicates that the cold-adapted P. syringae has a degradosome of novel structure. The identification of RNase R instead of polynucleotide phosphorylase in this complex underlines the importance of the interaction between endo- and exoribonucleases for the bacterial RNA metabolism. The physical association of RNase E with an exoribonuclease and an RNA helicase apparently is a common theme in the composition of bacterial RNA-degrading complexes.  相似文献   

9.
10.
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37°C to 15°C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3′-to-5′ exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3′-to-5′ exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3′-to-5′ processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Δpnp cells has consequences, such as accumulation of ribosomal subunits in the Δpnp cells, which may play a role in the cold sensitivity of this strain.  相似文献   

11.
12.
13.
14.
Cells respond to adverse environmental conditions by synthesizing new proteins or elevating the levels of pre-existing ones that are needed to cope with the particular stress situation. We show here that Escherichia coli RNase R, a processive 3'-to5'-exoribonuclease, is dramatically increased in response to a variety of different stress conditions. Elevation of RNase R activity by as much as 10-fold was observed in response to entry into stationary phase, starvation, and cold shock, and a approximately 3-fold increase was seen during growth in minimal medium compared with rich medium. The elevation in RNase R activity was associated primarily with an increase in RNase R protein. RNase R was previously implicated in quality control of rRNA and tRNA and in the decay of mRNAs with extensive secondary structure. Its dramatic increase under multiple stress conditions suggests extensive remodeling of structured RNA in response to the altered environment.  相似文献   

15.
16.
Bacterial shape is controlled by peptidoglycan assembly along the lateral wall and at the septum site. In contrast to rods at 37°C, the wild-type strain formed coccobacilli at 12°C, indicating a prevailing shift toward septal peptidoglycan synthesis at low temperature. Escherichia coli cold shock protein CsdA is a DEAD-box RNA helicase with an extended variable region at the carboxyl terminus. The csdA null mutant formed elongated cells indicating that CsdA, directly or indirectly, effects an increase in septation and the resultant coccobacillus morphology. Lipoprotein NlpI is suggested for a role in cell division. The presence of a plasmid encoding CsdA or NlpI increased septation and coccobacillus morphology of the csdA null mutant cells. Plasmid-encoded CsdAΔ445 (lacking the C-terminal extension) in the mutant complemented the growth and resulted in the appearance of coccobacillus- and rod-shaped cells. In contrast, a plasmid encoding both NlpI and CsdAΔ445 in the wild-type or mutant resulted in inhibition of growth accompanied with the formation of elongated and misshapen cells. However, a plasmid encoding both NlpI and CsdA resulted in normal growth and coccobacilli. The data indicate that the addition of the C-terminal extension yields an increase in septation and the resultant increased formation of coccobacilli.  相似文献   

17.
18.
RNase G (rng) is an E. coli endoribonuclease that is homologous to the catalytic domain of RNase E (rne), an essential protein that is a major participant in tRNA maturation, mRNA decay, rRNA processing and M1 RNA processing. We demonstrate here that whereas RNase G inefficiently participates in the degradation of mRNAs and the processing of 9S rRNA, it is not involved in either tRNA or M1 RNA processing. This conclusion is supported by the fact that inactivation of RNase G alone does not affect 9S rRNA processing and only leads to minor changes in mRNA half-lives. However, in rng rne double mutants mRNA decay and 9S rRNA processing are more defective than in either single mutant. Conversely, increasing RNase G levels in an rne-1 rng::cat double mutant, proportionally increased the extent of 9S rRNA processing and decreased the half-lives of specific mRNAs. In contrast, variations in the amount of RNase G did not alter tRNA processing under any circumstances. Thus, the failure of RNase G to complement rne mutations, even when overproduced at high levels, apparently results from its inability to substitute for RNase E in the maturation of tRNAs.  相似文献   

19.
Erce MA  Low JK  Wilkins MR 《The FEBS journal》2010,277(24):5161-5173
The RNA degradosome is built on the C-terminal half of ribonuclease E (RNase E) which shows high sequence variation, even amongst closely related species. This is intriguing given its central role in RNA processing and mRNA decay. Previously, we have identified RhlB (ATP-dependent DEAD-box RNA helicase)-binding, PNPase (polynucleotide phosphorylase)-binding and enolase-binding microdomains in the C-terminal half of Vibrio angustum S14 RNase E, and have shown through two-hybrid analysis that the PNPase and enolase-binding microdomains have protein-binding function. We suggest that the RhlB-binding, enolase-binding and PNPase-binding microdomains may be interchangeable between Escherichia coli and V. angustum S14 RNase E. In this study, we used two-hybrid techniques to show that the putative RhlB-binding microdomain can bind RhlB. We then used Blue Native-PAGE, a technique commonly employed in the separation of membrane protein complexes, in a study of the first of its kind to purify and analyse the RNA degradosome. We showed that the V. angustum S14 RNA degradosome comprises at least RNase E, RhlB, enolase and PNPase. Based on the results obtained from sequence analyses, two-hybrid assays, immunoprecipitation experiments and Blue Native-PAGE separation, we present a model for the V. angustum S14 RNA degradosome. We discuss the benefits of using Blue Native-PAGE as a tool to analyse the RNA degradosome, and the implications of microdomain-mediated RNase E interaction specificity.  相似文献   

20.
RNase R is an important exoribonuclease that participates in the degradation of structured RNAs in Escherichia coli. In earlier work, it was shown that RNase R levels increase dramatically under certain stress conditions, particularly during cold shock and stationary phase. However, the regulatory processes that lead to this elevation are not well understood. We show here that the increase in RNase R in stationary phase is unaffected by the global regulators, RpoS and (p)ppGpp, and that it occurs despite a major reduction in rnr message. Rather, we find that RNase R is a highly unstable protein in exponential phase, with a half-life of ∼10 min, and that the protein is stabilized in stationary phase, leading to its relative increase. RNase R is also stabilized during cold shock and by growth in minimal medium, two other conditions that lead to its elevation. These data demonstrate that RNase R is subject to regulation by a novel, posttranslational mechanism that may have important implications for our complete understanding of RNA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号