首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pertussis toxin (PTX), an exotoxin of Bordetella pertussis, enhances the development of experimental autoimmune diseases such as experimental autoimmune uveitis (EAU) and experimental autoimmune encephalomyelitis (EAE) in rodent models. The mechanisms of the promotion of experimental autoimmune diseases by PTX may be based upon PTX-induced disruption of the blood eye/brain barriers facilitating the infiltration of inflammatory cells, the modulation of inflammatory cell migration and the enhancement of the activation of inflammatory cells. We hypothesized that the facilitation of experimental autoimmunity by PTX suggests that its influence on the in vivo immune response to auto-antigen may differ from its influence on non-self antigens.

Methodology/Principal Findings

We have evaluated the effect of PTX on the simultaneous generation of delayed type hypersensitivity (DTH) responses and autoimmune responses to uveitogenic interphotoreceptor retinoid binding protein peptide (IRBP161–180), encephalitogenic myelin oligodendrocyte glycoprotein peptide (MOG35–55) or ovalbumin (OVA). PTX injection of mice immunized to IRBP peptide161–180 led to (i) the development of EAU as shown by histopathology of the retina, (ii) pro-inflammatory cytokine production by splenocytes in response to IRBP peptide 161–180, and (iii) symptomatic EAE in mice immunized with encephalitogenic MOG peptide35–55. However, mice that received PTX had a reduced DTH response to IRBP161–180 peptide or MOG peptide35–55 when challenged distal to the site affected by autoreactive T cells. Moreover, footpad challenge with MOG35–55 peptide reduced EAE in mice immunized with MOG peptide. In contrast, the use of PTX when immunizing with OVA protein or an OVA immunogenic peptide did not affect the DTH response to OVA.

Conclusions/Significance

The results suggest that that the reduced DTH response in mice receiving PTX may be specific for autoantigens and autoantigen-reactive T cells are diverted away from ectopic sites that received the autoantigen and towards the tissue site of the autoantigen.  相似文献   

2.

Background

Cellular prion-related protein (PrPc) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrPc, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypotesize that PrPc could exert antimicrobial activity.

Methodology and Principal Findings

Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-α in vitro.

Conclusions

The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.  相似文献   

3.

Background

Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E. coli impedes the large-scale production of fusion proteins from E. coli.

Results

Expressed protein ligation is a semisynthetic method to ligate a bacterially expressed protein with a chemically synthesized peptide. In this study, we developed expressed protein ligation-based techniques to conjugate synthetic polyarginine peptides to Cre recombinase. The conjugation efficiency of this technique was higher than 80%. Using this method, we prepared semisynthetic Cre with poly-L-arginine (ssCre-R9), poly-D-arginine (ssCre-dR9) and biotin (ssCre-dR9-biotin). We found that ssCre-R9 was delivered to the cell to a comparable level or more efficiently compared with Cre-R11 and TAT-Cre expressed as recombinant fusion proteins in E. coli. We also found that the poly-D-arginine cell-penetrating peptide was more effective than the poly-L-arginine cell-penetrating peptide for the delivery of Cre into cell. We visualized the cell transduced with ssCre-dR9-biotin using avidin-FITC.

Conclusions

Collectively, the results demonstrate that expressed protein ligation is an excellent technique for the production of cell-permeable Cre recombinase with polyarginine cell-penetrating peptides. In addition, this approach will extend the use of cell-permeable proteins to more sophisticated applications, such as cell imaging.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0126-z) contains supplementary material, which is available to authorized users.  相似文献   

4.

Objective

To investigate the antigenic effect of a peptide containing two epitopes of Chlamydia pneumoniae (Cpn) on atherosclerotic lesion formation in mice infected with Cpn.

Materials and Methods

Six-week-old Apobtm2SgyLdlrtm1Her/J mice were immunized using a repetitive immunization multiple-sites strategy with KLH-conjugated peptides derived from the major outer membrane protein and the putative outer membrane protein 5 of Cpn. Mice were fed a high-fat diet and infected with Cpn twice during the 10-week diet period. Lesions were evaluated histologically; local and systemic immune responses were analyzed by immunohistochemistry of aorta samples and cytokine measurements in plasma samples and splenocyte supernatants.

Results

Mice immunized with the combined Cpn peptide showed a greater reduction in lesion size compared to mice immunized with either epitope alone [54.7% vs 39.8% or 41.72%] and was also associated with a significant decrease in lesion area in descending aortas compared with those in controls (88.9% for combined Cpn peptide, 81.9% for MOMP peptide and 75.7% for Omp5, respectively). This effect was associated with a shift in the cellular composition of plaques towards decreased inflammatory cell and increased regulatory T-cell content. Additionally, the effect was also connected with decreased secretion of proinflammatory cytokines and increased production of anti-inflammatory cytokines demonstrated in plasma and in supernatant on stimulated spleen cells.

Conclusions

Atherosclerotic lesion formation may be promoted by Cpn infection in the presence of a high-fat diet, and reduced by immunization with the combined Cpn peptide. The combined peptide has more potential than either epitope alone in reducing atherosclerotic lesion development through Treg expansion.  相似文献   

5.

Background

GBV-C infection is associated with prolonged survival in HIV-infected people and GBV-C inhibits HIV replication in co-infection models. Expression of the GBV-C nonstructural phosphoprotein 5A (NS5A) decreases surface levels of the HIV co-receptor CXCR4, induces the release of SDF-1 and inhibits HIV replication in Jurkat CD4+ T cell lines.

Methodology/Principal Findings

Jurkat cell lines stably expressing NS5A protein and peptides were generated and HIV replication in these cell lines assessed. HIV replication was significantly inhibited in all cell lines expressing NS5A amino acids 152–165. Substitution of an either alanine or glycine for the serine at position 158 (S158A or S158G) resulted in a significant decrease in the HIV inhibitory effect. In contrast, substituting a phosphomimetic amino acid (glutamic acid; S158E) inhibited HIV as well as the parent peptide. HIV inhibition was associated with lower levels of surface expression of the HIV co-receptor CXCR4 and increased release of the CXCR4 ligand, SDF-1 compared to control cells. Incubation of CD4+ T cell lines with synthetic peptides containing amino acids 152–167 or the S158E mutant peptide prior to HIV infection resulted in HIV replication inhibition compared to control peptides.

Conclusions/Significance

Expression of GBV-C NS5A amino acids 152–165 are sufficient to inhibit HIV replication in vitro, and the serine at position 158 appears important for this effect through either phosphorylation or structural changes in this peptide. The addition of synthetic peptides containing 152–167 or the S158E substitution to Jurkat cells resulted in HIV replication inhibition in vitro. These data suggest that GBV-C peptides or a peptide mimetic may offer a novel, cellular-based approach to antiretroviral therapy.  相似文献   

6.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

7.

Background

Peptide amphiphiles (PAs) are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications.

Methodology/Principal Findings

PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol) to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time.

Conclusions/Significance

Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.  相似文献   

8.

Background

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini.

Methodology/Principal Findings

In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme''s substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme''s active site. This model can readily account for the strong preference for positively charged side chains.

Conclusions/Significance

To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide''s length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo.  相似文献   

9.

Background

Visceral leishmaniasis is the most severe form of leishmaniasis. Approximately 20% of zoonotic human visceral leishmaniasis worldwide is caused by Leishmania infantum, which is also known as Leishmania chagasi in Latin America, and disease incidence is increasing in urban and peri-urban areas of the tropics. In this form of disease, dogs are the main reservoirs. Diagnostic methods used to identify Leishmania infected animals are not able to detect all of the infected ones, which can compromise the effectiveness of disease control. Therefore, to contribute to the improvement of diagnostic methods for canine visceral leishmaniasis (CVL), we aimed to identify and test novel antigens using high-throughput analysis.

Methodology/Principal Findings

Immunodominant proteins from L. infantum were mapped in silico to predict B cell epitopes, and the 360 predicted peptides were synthesized on cellulose membranes. Immunoassays were used to select the most reactive peptides, which were then investigated with canine sera. Next, the 10 most reactive peptides were synthesized using solid phase peptide synthesis protocol and tested using ELISA. The sensitivity and specificity of these peptides were also compared to the EIE-LVC Bio-Manguinhos kit, which is recommended by the Brazilian Ministry of Health for use in leishmaniasis control programs. The sensitivity and specificity of the selected synthesized peptides was as high as 88.70% and 95.00%, respectively, whereas the EIE-LVC kit had a sensitivity of 13.08% and 100.00% of specificity. Although the tests based on synthetic peptides were able to diagnose up to 94.80% of asymptomatic dogs with leishmaniasis, the EIE-LVC kit failed to detect the disease in any of the infected asymptomatic dogs.

Conclusions/Significance

Our study shows that ELISA using synthetic peptides is a technique with great potential for diagnosing CVL; furthermore, the use of these peptides in other diagnostic methodologies, such as immunochromatographic tests, could be beneficial to CVL control programs.  相似文献   

10.

Background

The current antibody detection tests for the diagnosis of gambiense human African trypanosomiasis (HAT) are based on native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. These native VSGs are difficult to produce, and contain non-specific epitopes that may cause cross-reactions. We aimed to identify mimotopic peptides for epitopes of T.b. gambiense VSGs that, when produced synthetically, can replace the native proteins in antibody detection tests.

Methodology/Principal Findings

PhD.-12 and PhD.-C7C phage display peptide libraries were screened with mouse monoclonal antibodies against the predominant VSGs LiTat 1.3 and LiTat 1.5 of T.b. gambiense. Thirty seven different peptide sequences corresponding to a linear LiTat 1.5 VSG epitope and 17 sequences corresponding to a discontinuous LiTat 1.3 VSG epitope were identified. Seventeen of 22 synthetic peptides inhibited the binding of their homologous monoclonal to VSG LiTat 1.5 or LiTat 1.3. Binding of these monoclonal antibodies to respectively six and three synthetic mimotopic peptides of LiTat 1.5 and LiTat 1.3 was significantly inhibited by HAT sera (p<0.05).

Conclusions/Significance

We successfully identified peptides that mimic epitopes on the native trypanosomal VSGs LiTat 1.5 and LiTat 1.3. These mimotopes might have potential for the diagnosis of human African trypanosomiasis but require further evaluation and testing with a large panel of HAT positive and negative sera.  相似文献   

11.

Purpose

PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic potential in vitro and in vivo.

Experimental Design

We generated a peptide containing a penetrating sequence associated to the interaction motif between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated.

Results

We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary healthy cells. Finally, neither toxicity nor immunogenic responses were observed.

Conclusion

Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression.  相似文献   

12.

Rationale

The family of natriuretic peptides (NPs), including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A) and GC-B (NPR-B). As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI) was investigated.

Objective

We utilized complementary in vitro and in vivo models to determine the potential role of PDI in regulating the ability of the NPs to generate its second messenger, cyclic guanosine monophosphate.

Methods and Results

Inhibition of PDI attenuated the ability of ANP, BNP and CNP to generate cGMP in human mesangial cells (HMCs), human umbilical vein endothelial cells (HUVECs), and human aortic smooth muscle cells (HASMCs), each of which were shown to express PDI. In LLC-PK1 cells, where PDI expression was undetectable by immunoblotting, PDI inhibition had a minimal effect on cGMP generation. Addition of PDI to cultured LLC-PK1 cells increased intracellular cGMP generation mediated by ANP. Inhibition of PDI in vivo attenuated NP-mediated generation of cGMP by ANP. Surface Plasmon Resonance demonstrated modest and differential binding of the natriuretic peptides with immobilized PDI in a cell free system. However, PDI was shown to co-localize on the surface of cells with GC-A and GC-B by co-immunoprecpitation and immunohistochemistry.

Conclusion

These data demonstrate for the first time that cell surface PDI expression and function regulate the capacity of natriuretic peptides to generate cGMP through interaction with their receptors.  相似文献   

13.

Background

To induce potent epitope-specific T cell immunity by a peptide-based vaccine, epitope peptides must be delivered efficiently to antigen-presenting cells (APCs) in vivo. Therefore, selecting an appropriate peptide carrier is crucial for the development of an effective peptide vaccine. In this study, we explored new peptide carriers which show enhancement in cytotoxic T lymphocyte (CTL) induction capability.

Methodology/Principal Findings

Data from an epitope-specific in vivo CTL assay revealed that phosphatidylserine (PS) has a potent adjuvant effect among candidate materials tested. Further analyses showed that PS-conjugated antigens were preferentially and efficiently captured by professional APCs, in particular, by CD11c+CD11b+MHCII+ conventional dendritic cells (cDCs) compared to multilamellar liposome-conjugates or unconjugated antigens. In addition, PS demonstrated the stimulatory capacity of peptide-specific helper T cells in vivo.

Conclusions/Significance

This work indicates that PS is the easily preparable efficient carrier with a simple structure that delivers antigen to professional APCs effectively and induce both helper and cytotoxic T cell responses in vivo. Therefore, PS is a promising novel adjuvant for T cell-inducing peptide vaccines.  相似文献   

14.

Background

Tracking small migrant organisms worldwide has been hampered by technological and recovery limitations and sampling bias inherent in exogenous markers. Naturally occurring stable isotopes of H (δ2H) in feathers provide an alternative intrinsic marker of animal origin due to the predictable spatial linkage to underlying hydrologically driven flow of H isotopes into foodwebs. This approach can assess the likelihood that a migrant animal originated from a given location(s) within a continent but requires a robust algorithm linking H isotopes in tissues of interest to an appropriate hydrological isotopic spatio-temporal pattern, such as weighted-annual rainfall. However, a number of factors contribute to or alter expected isotopic patterns in animals. We present results of an extensive investigation into taxonomic and environmental factors influencing feather δ 2H patterns across North America.

Principal Findings

Stable isotope data were measured from 544 feathers from 40 species and 140 known locations. For δ 2H, the most parsimonious model explaining 83% of the isotopic variance was found with amount-weighted growing-season precipitation δ 2H, foraging substrate and migratory strategy.

Conclusions/Significance

This extensive H isotopic analysis of known-origin feathers of songbirds in North America and elsewhere reconfirmed the strong coupling between tissue δ 2H and global hydrologic δ 2H patterns, and accounting for variance associated with foraging substrate and migratory strategy, can be used in conservation and research for the purpose of assigning birds and other species to their approximate origin.  相似文献   

15.

Background

Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry.

Methods/Principal Findings

We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments.

Conclusions

Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis.  相似文献   

16.

Background

Cysticercosis and hydatidosis seriously affect human health and are responsible for considerable economic loss in animal husbandry in non-developed and developed countries. S3Pvac and EG95 are the only field trial-tested vaccine candidates against cysticercosis and hydatidosis, respectively. S3Pvac is composed of three peptides (KETc1, GK1 and KETc12), originally identified in a Taenia crassiceps cDNA library. S3Pvac synthetically and recombinantly expressed is effective against experimentally and naturally acquired cysticercosis.

Methodology/Principal Findings

In this study, the homologous sequences of two of the S3Pvac peptides, GK1 and KETc1, were identified and further characterized in Taenia crassiceps WFU, Taenia solium, Taenia saginata, Echinococcus granulosus and Echinococcus multilocularis. Comparisons of the nucleotide and amino acid sequences coding for KETc1 and GK1 revealed significant homologies in these species. The predicted secondary structure of GK1 is almost identical between the species, while some differences were observed in the C terminal region of KETc1 according to 3D modeling. A KETc1 variant with a deletion of three C-terminal amino acids protected to the same extent against experimental murine cysticercosis as the entire peptide. On the contrary, immunization with the truncated GK1 failed to induce protection. Immunolocalization studies revealed the non stage-specificity of the two S3Pvac epitopes and their persistence in the larval tegument of all species and in Taenia adult tapeworms.

Conclusions/Significance

These results indicate that GK1 and KETc1 may be considered candidates to be included in the formulation of a multivalent and multistage vaccine against these cestodiases because of their enhancing effects on other available vaccine candidates.  相似文献   

17.

Background

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Methodology/Findings

Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1.

Conclusions/Significance

A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology.  相似文献   

18.

Background

The factors influencing variation in the clinical forms of Chagas disease have not been elucidated; however, it is likely that the genetics of both the host and the parasite are involved. Several studies have attempted to correlate the T. cruzi strains involved in infection with the clinical forms of the disease by using hemoculture and/or PCR-based genotyping of parasites from infected human tissues. However, both techniques have limitations that hamper the analysis of large numbers of samples. The goal of this work was to identify conserved and polymorphic linear B-cell epitopes of T. cruzi that could be used for serodiagnosis and serotyping of Chagas disease using ELISA.

Methodology

By performing B-cell epitope prediction on proteins derived from pair of alleles of the hybrid CL Brener genome, we have identified conserved and polymorphic epitopes in the two CL Brener haplotypes. The rationale underlying this strategy is that, because CL Brener is a recent hybrid between the TcII and TcIII DTUs (discrete typing units), it is likely that polymorphic epitopes in pairs of alleles could also be polymorphic in the parental genotypes. We excluded sequences that are also present in the Leishmania major, L. infantum, L. braziliensis and T. brucei genomes to minimize the chance of cross-reactivity. A peptide array containing 150 peptides was covalently linked to a cellulose membrane, and the reactivity of the peptides was tested using sera from C57BL/6 mice chronically infected with the Colombiana (TcI) and CL Brener (TcVI) clones and Y (TcII) strain.

Findings and Conclusions

A total of 36 peptides were considered reactive, and the cross-reactivity among the strains is in agreement with the evolutionary origin of the different T. cruzi DTUs. Four peptides were tested against a panel of chagasic patients using ELISA. A conserved peptide showed 95.8% sensitivity, 88.5% specificity, and 92.7% accuracy for the identification of T. cruzi in patients infected with different strains of the parasite. Therefore, this peptide, in association with other T. cruzi antigens, may improve Chagas disease serodiagnosis. Together, three polymorphic epitopes were able to discriminate between the three parasite strains used in this study and are thus potential targets for Chagas disease serotyping.  相似文献   

19.

Background

At present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We therefore aimed at identifying peptides that mimic epitopes, hence called “mimotopes,” specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests.

Methodology/Principal Findings

A Ph.D.-12 peptide phage display library was screened with polyclonal antibodies from patient sera, previously affinity purified on VSG LiTat 1.3 or LiTat 1.5. The peptide sequences were derived from the DNA sequence of the selected phages and synthesised as biotinylated peptides. Respectively, eighteen and twenty different mimotopes were identified for VSG LiTat 1.3 and LiTat 1.5, of which six and five were retained for assessment of their diagnostic performance. Based on alignment of the peptide sequences on the original protein sequence of VSG LiTat 1.3 and 1.5, three additional peptides were synthesised. We evaluated the diagnostic performance of the synthetic peptides in indirect ELISA with 102 sera from HAT patients and 102 endemic negative controls. All mimotopes had areas under the curve (AUCs) of ≥0.85, indicating their diagnostic potential. One peptide corresponding to the VSG LiTat 1.3 protein sequence also had an AUC of ≥0.85, while the peptide based on the sequence of VSG LiTat 1.5 had an AUC of only 0.79.

Conclusions/Significance

We delivered the proof of principle that mimotopes for T.b. gambiense VSGs, with diagnostic potential, can be selected by phage display using polyclonal human antibodies.  相似文献   

20.

Background

The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair.

Methodology/Principal Findings

Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides—Hep I, Hep III, RGD—were identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels of angiogenesis and arteriogenesis 6 weeks post treatment.

Conclusions/Significance

We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area. Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for investigating in vivo cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号