首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers.

Methods

Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity.

Results

We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEPhigh cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEPlow counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice.

Conclusions

Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy.  相似文献   

2.

Background

In-vitro expansion of functional beta cells from adult human islets is an attractive approach for generating an abundant source of cells for beta-cell replacement therapy of diabetes. Using genetic cell-lineage tracing we have recently shown that beta cells cultured from adult human islets undergo rapid dedifferentiation and proliferate for up to 16 population doublings. These cells have raised interest as potential candidates for redifferentiation into functional insulin-producing cells. Previous work has associated dedifferentiation of cultured epithelial cells with epithelial-mesenchymal transition (EMT), and suggested that EMT generates cells with stem cell properties. Here we investigated the occurrence of EMT in these cultures and assessed their stem cell potential.

Methodology/Principal Findings

Using cell-lineage tracing we provide direct evidence for occurrence of EMT in cells originating from beta cells in cultures of adult human islet cells. These cells express multiple mesenchymal markers, as well as markers associated with mesenchymal stem cells (MSC). However, we do not find evidence for the ability of such cells, nor of cells in these cultures derived from a non-beta-cell origin, to significantly differentiate into mesodermal cell types.

Conclusions/Significance

These findings constitute the first demonstration based on genetic lineage-tracing of EMT in cultured adult primary human cells, and show that EMT does not induce multipotency in cells derived from human beta cells.  相似文献   

3.

Background

A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.

Methods/Findings

We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.

Conclusions/Significance

The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.  相似文献   

4.

Background

Multidrug resistance (MDR) is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells.

Methods/Preliminary Findings

Using rational screening of representatives from a chemical compound library, we found a novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-yl)sulfanyl]acetamide), that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression, indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39 is benzothiazole linked to a triazine ring backbone.

Conclusion/Significance

Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics targeting ABCG2-mediated MDR in combinational cancer chemotherapy.  相似文献   

5.
6.

Background

The ATP-binding cassette transporter B1 (ABCB1) gene codes for a membrane efflux pump localized in epithelial cells. Together with other Permeability-glycoproteins in the small and large intestine, its product represents a barrier against xenobiotics, bacterial toxins, drugs and other substances introduced with diet, including carcinogens. The aim of this investigation was to verify the possible contribution of ABCB1 single nucleotide polymorphisms (SNPs) to the genetic risk of colorectal cancer (CRC).

Results

DNA obtained from the peripheral blood of 98 CRC patients and 100 healthy controls was genotyped for the three selected SNPs: 1236C > T (rs1128503), 2677G > T/A (rs2032582), and 3435C > T (rs1045642). Molecular data were analyzed to asses allele and haplotype association with CRC.No evidence of an association between ABCB1 alleles and CRC occurrence as a whole was found. However, ABCB1 showed either association with carcinoma of the sigmoid colon, and appeared able to influence the sex ratio among CRC patients. These two effects seemed to act independently based on multivariate analysis. We showed that ABCB1 polymorphisms were able to influence CRC susceptibility related to tumor localization and patient gender.

Conclusions

We suggest that sensitivity to undetermined risk factors could depend on the genetic background of ABCB1 locus, with a mechanism that also depends on patient gender.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0089-8) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
9.

Background and purpose

Metastatic melanoma remains one of the most invasive and highly drug resistant cancers. The over expression of anti-apoptotic protein Mcl-1 has been associated with inferior survival, poor prognosis and chemoresistance of malignant melanoma. A BH3 mimetic, ABT-737, has demonstrated efficacy in several forms of cancers. However, the efficacy of ABT-737 depends on Mcl-1. Because the over expression of Mcl-1 is frequently observed in melanoma, specifically targeting of Mcl-1 may overcome the resistance of ABT-737. In this study, we investigated the effects of Maritoclax, a novel Mcl-1-selective inhibitor, alone and in combination with ABT-737, on the survival of human melanoma cells.

Experimental approach

For cell viability assessment we performed MTT assay. Apoptosis was determined using western blot and flow cytometric analysis.

Key results

The treatment of Maritoclax reduced the cell viability of melanoma cells with an IC50 of between 2.2–5.0 µM. Further, treatment of melanoma cells with Maritoclax showed significant decrease in Mcl-1 expression. We found that Maritoclax was able to induce apoptosis in melanoma cells in a caspase-dependent manner. Moreover, Maritoclax induced Mcl-1 degradation via the proteasome system, which was associated with its pro-apoptotic activity. We also found that Maritoclax treatment increased mitochondrial translocation of Bim and Bmf. Importantly, Maritoclax markedly enhanced the efficacy of ABT-737 against melanoma cells in both two- and three-dimensional spheroids.

Conclusions and implications

Taken together, these results suggest that targeting of Mcl-1 by Maritoclax may represent a new therapeutic strategy for melanoma treatment that warrants further investigation as a single therapy or in combination with other agents such as Bcl-2 inhibitors.  相似文献   

10.
ATP-binding cassette (ABC) transporters play a pivotal role in physiology and pathology. We identified and cloned two novel mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ABC transporter ABCB 5 in human melanoma cells. The deduced ABCB 5alpha protein appears to be an altered splice variant containing only a putative ABC, whereas the ABCB 5beta isoform shares approximately 70% similarity with ABCB1 (MDR1) and has a deduced topological arrangement similar to that of the whole carboxyl terminal half of the ABCB1 gene product, P-glycoprotein, including an intact ABC. Northern blot, real-time PCR, and conventional RT-PCR were used to verify the expression profiles of ABCB 5alpha/beta. We found that the melanomas included among the NCI-60 panel of cell lines preferentially expressed both ABCB 5alpha and ABCB 5beta. However, ABCB 5alpha/beta expression was undetectable in two amelanotic melanomas (M14 and LOX-IMVI). The expression profile of ABCB 5alpha/beta in all of the other melanomas of the panel was confirmed both by RT-PCR and by sequencing. Neither ABCB 5alpha nor ABCB 5beta expression was found in normal tissues such as liver, spleen, thymus, kidney, lung, colon, small intestines or placenta. ABCB 5alpha/beta mRNAs were also expressed in normal melanocytes and in retinal pigment epithelial cells, suggesting that ABCB 5alpha/beta expression is pigment cell-specific and might be involved in melanogenesis. Our findings indicate that expression of ABCB 5alpha/beta might possibly provide two novel molecular markers for differential diagnosis of melanomas and constitute potential molecular targets for therapy of melanomas.  相似文献   

11.
12.

Background

The potential prognostic value of human equilibrative nucleoside transporter1 in pancreatic cancer receiving gemcitabine-based chemotherapy is variably reported.

Objective

The objective of this study was to conduct a systematic review of literature evaluating human equilibrative nucleoside transporter1 expression as a prognostic factor in pancreatic cancer receiving gemcitabine-based chemotherapy and to conduct a subsequent meta-analysis to quantify the overall prognostic effect.

Methods

Related studies were identified and evaluated for quality through multiple search strategies. Only studies analyzing pancreatic cancer receiving gemcitabine-based chemotherapy were eligible for inclusion. Data were collected from studies comparing overall, disease-free and progression-free survival (OS, DFS and PFS) in patients with low human equilibrative nucleoside transporter1 levels and those having high levels. The hazard ratio (HR) and its 95% confidence interval (95%CI) were used to assess the strength of associations. Hazard ratios greater than 1 reflect adverse survival associated with low human equilibrative nucleoside transporter1 levels.

Results

A total of 12 studies (n = 875) were involved in this meta-analysis (12 for OS, 5 for DFS, 3 for PFS). For overall and disease-free survival, the pooled HRs of human equilibrative nucleoside transporter1 were significant at 2.93 (95% confidence interval [95% CI], 2.37–3.64) and 2.67 (95% CI, 1.87–3.81), respectively. For progression-free survival, the pooled HR in higher human equilibrative nucleoside transporter1 expression in pancreatic cancer receiving gemcitabine-based chemotherapy was 2.76 (95% CI, 1.76–4.34). No evidence of significant heterogeneity or publication bias was seen in any of these studies.

Conclusion

These results support the case for a low human equilibrative nucleoside transporter1 level representing a significant and reproducible marker of adverse prognosis in pancreatic cancer receiving gemcitabine-based chemotherapy.  相似文献   

13.

Background

Wnt signaling is important in development and can also contribute to the initiation and progression of cancer. The Secreted Frizzled Related Proteins (SFRPs) constitute a family of Wnt modulators, crucial for controlling Wnt signaling. Here we investigate the expression and role of SFRP3 in melanoma.

Methodology/Principal Findings

We show that SFRP3 mRNA is down-regulated in malignant melanoma tumors as compared to normal/benign tissue. Furthermore, we found that SFRP3 expression was lost in the malignant melanoma cell lines, A2058, HTB63 and A375, but not in the non-transformed melanocyte cell line, Hermes 3A. Methylated CpG rich areas were detected in the SFRP3 gene in melanoma cell lines and their SFRP3 expression could be restored using the demethylating agent, 5′aza-deoxycytidine. Addition of recombinant SFRP3 to melanoma cells had no effect on viable cell numbers, but decreased cell migration and invasion. Wnt5a signaling has been shown to increase the migration and invasion of malignant melanoma cells, and high expression of Wnt5a in melanoma tumors has been connected to a poor prognosis. We found that recombinant SFRP3 could inhibit Wnt5a signaling, and that it inhibited melanoma cell migration and invasion in a Wnt5a-dependent manner.

Conclusion/Significance

We conclude that SFRP3 functions as a melanoma migration and invasion suppressor by interfering with Wnt5a signaling.  相似文献   

14.

Background

Wnt signaling controls the balance between stem cell proliferation and differentiation and body patterning throughout development. Previous data demonstrated that non-canonical Wnts (Wnt5a, Wnt11) increased cardiac gene expression of circulating endothelial progenitor cells (EPC) and bone marrow-derived stem cells cultured in vitro. Since previous studies suggested a contribution of the protein kinase C (PKC) family to the Wnt5a-induced signalling, we investigated which PKC isoforms are activated by non-canonical Wnt5a in human EPC.

Methodology/Principal Findings

Immunoblot experiments demonstrated that Wnt5a selectively activated the novel PKC isoform, PKC delta, as evidenced by phosphorylation and translocation. In contrast, the classical Ca2+-dependent PKC isoforms, PKC alpha and beta2, and one of the other novel PKC isoforms, PKC epsilon, were not activated by Wnt5a. The PKC delta inhibitor rottlerin significantly blocked co-culture-induced cardiac differentiation in vitro, whereas inhibitors directed against the classical Ca2+-dependent PKC isoforms or a PKC epsilon-inhibitory peptide did not block cardiac differentiation. In accordance, EPC derived from PKC delta heterozygous mice exhibited a significant reduction of Wnt5a-induced cardiac gene expression compared to wild type mice derived EPC.

Conclusions/Significance

These data indicate that Wnt5a enhances cardiac gene expressions of EPC via an activation of PKC delta.  相似文献   

15.
16.

Background

Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease.

Methodology and Principal Findings

Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo.

Conclusions/Significance

We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs.  相似文献   

17.
18.

Background and Aims

Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort.

Methods

A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed.

Results

None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI.

Conclusions

Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility.  相似文献   

19.

Background

Human induced pluripotent stem cells (IPSCs) have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell “rejuvenation.”

Methodology/Principal Findings

We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5), telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs). In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres.

Conclusions/Significance

While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.  相似文献   

20.
Liu Z  Xing M 《PloS one》2012,7(2):e31729

Background

This study was designed to explore the therapeutic potential of suppressing MAP kinase and PI3K/Akt pathways and histone deacetylase (HDAC) to induce the expression of sodium/iodide symporter (NIS) and radioiodine uptake in non-thyroid cancer cells.

Methods

We tested the effects of the MEK inhibitor RDEA119, the Akt inhibitor perifosine, and the HDAC inhibitor SAHA on NIS expression in thirteen human cancer cell lines derived from melanoma, hepatic carcinoma, gastric carcinoma, colon carcinoma, breast carcinoma, and brain cancers. We also examined radioiodine uptake and histone acetylation at the NIS promoter in selected cells.

Results

Overall, the three inhibitors could induce NIS expression, to various extents, in melanoma and all the epithelial carcinoma-derived cells but not in brain cancer-derived cells. SAHA was most effective and its effect could be significantly enhanced by RDEA119 and perifosine. The expression of NIS, at both mRNA and protein levels, was most robust in the melanoma cell M14, hepatic carcinoma cell HepG2, and the gastric carcinoma cell MKN-7 cell. Radioiodine uptake was correspondingly induced, accompanied by robust increase in histone acetylation at the NIS promoter, in these cells when treated with the three inhibitors.

Conclusions

This is the first demonstration that simultaneously suppressing the MAP kinase and PI3K/Akt pathways and HDAC could induce robust NIS expression and radioiodine uptake in certain non-thyroid human cancer cells, providing novel therapeutic implications for adjunct radioiodine treatment of these cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号