首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone modifications coordinate the chromatin localization of key regulatory factors in mitosis. For example, mitotic phosphorylation of Histone H3 threonine‐3 (H3T3ph) by Haspin creates a binding site for the chromosomal passenger complex (CPC). However, how these histone modifications are spatiotemporally controlled during the cell cycle is unclear. Here we show that Plk1 binds to Haspin in a Cdk1‐phosphorylation‐dependent manner. Reducing Plk1 activity decreases the phosphorylation of Haspin and inhibits H3T3ph, particularly in prophase, suggesting that Plk1 is required for initial activation of Haspin in early mitosis. These studies demonstrate that Plk1 can positively regulate CPC recruitment in mitosis.  相似文献   

2.
3.
Post-translational histone modifications regulate many aspects of chromosome activity. Threonine 3 of histone H3 is highly conserved, but the significance of its phosphorylation is unclear, and the identity of the corresponding kinase in plants is unknown. Therefore, we characterized the candidate kinase in Arabidopsis thaliana, called AtHaspin. Recombinant AtHaspin in vitro phosphorylates histone H3 at threonine 3. Reduction of H3 threonine 3 phosphorylation level and reduced chromatin condensation in interphase nuclei by AtHaspin RNAi supports the proposition that this kinase is involved in histone H3 phosphorylation in vivo in mitotic cells. In addition, we provide a developmental function for a Haspin kinase. At the whole plant level, altered expression of the kinase induced pleiotropic phenotypes with defects in floral organs and vascular tissue. It reduced fertility and modified adventitious shoot apical meristems that then gave rise to plants with multi-rosettes and multi-shoots. Haspin mutant embryos frequently showed alteration in division plane orientation that could be traced back to the earliest divisions of embryo development, thus Haspin contributes to embryonic patterning.  相似文献   

4.
Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg2 and Lys4 adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys4 of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser137 of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser137 resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser137 might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.Eukaryotic protein kinases (ePK)1 constitute a large family of enzymes that coordinate virtually any cellular processes by the phosphorylation of their target proteins at specific sites (1, 2). Active kinases often modulate the activity of other enzymes, including other kinases, thus amplifying and extending an initial signal that affect sometimes thousands of proteins (3). This creates a highly complex network of feedback and forward loops where multiple kinases can mutually influence each other''s activity. Kinases adopt three molecular strategies to select and specifically phosphorylate their substrates in the crowded environment of a cell (2). First, tight control of cellular kinase localization assures that only proteins present in the close proximity of the kinase can be phosphorylated; second, the kinase specific activity can be regulated via post-translational modifications or the recruitment of cofactor molecules; and third, the recognition of specific consensus motifs on substrates ensures that phosphorylation only occurs at the intended site or sites (2).The Haspin kinase is a member of the ePK family that structurally diverges from most ePKs (1, 4). The Haspin kinase domain displays structural features that have never been observed in other ePK family members (5, 6). Specifically, the possibility of activation loop phosphorylation, a frequent regulatory mechanisms to control kinase activity, is absent in Haspin (5). Haspin is characterized by an active conformation that is stabilized by a hydrophobic lock of the helix αC inducing a stable S conformation of the structurally unique activation segment. These specific structural features also create a structurally diverse substrate binding site comprising a highly electronegative cleft for the histone H3 basic tails (5). Interestingly, the recognition of H3 has been shown to be modulated by methylation at H3 residue Lys4, thus coupling Haspin activity with epigenetic mechanisms of chromatin regulation (5). Histone H3 that is phosphorylated at Thr3 is so far the only well-characterized Haspin substrate (7). H3Thr3 phosphorylation (H3Thr3ph) is required for the localization of Aurora B at the centromere (810). Inactivation of Haspin catalytic activity by ATP mimetic inhibitors induces Aurora B centromeric delocalization, leading to a loss of phosphorylation in chromatin associated Aurora B substrates (11, 12). To date, apart from this well-characterized centromeric function of Haspin activity, the broader cellular functions of the kinase and the phosphorylation events that control these remain essentially unknown.In this study, we used an integrated biochemical, proteomic, pharmacologic, and structural biology approach to study the Haspin kinase, its substrates and the cellular consequences of its activity. Specifically, we determined a new mode of kinase substrate binding and identified a Haspin kinase substrate recognition motif. We identified 3964 phosphorylation sites in chromatin-associated proteins, quantified their response to Haspin inhibition, and verified the mitotic phosphorylation of MacroH2A Ser137 (13) as directly dependent by Haspin activity. Altogether, our data suggest that Haspin regulates the phosphorylation of proteins involved in mechanisms that control gene expression, including the modifications of histones, and provide evidence for novel molecular effects of Haspin activity on mitotic chromatin.  相似文献   

5.
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta . Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo . Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.  相似文献   

6.
7.
Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9 and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9 or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8 and R17 increased biotinylation of K4, K9 and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation.  相似文献   

8.
Liu H  Duan Y 《Biophysical journal》2008,94(12):4579-4585
The highly conserved signature N-terminal peptide of histone protein H3 plays crucial roles in gene expression controls. We investigated the conformational changes of the peptide caused by lysine dimethylation and acetylation of the histone H3 N-terminal tail by molecular dynamics and replica-exchange molecular dynamics simulations. Our results suggest that the most populated structures of the modified H3 N-terminal peptides are very similar to those of the wild-type peptide. Thus, the modifications introduce marginal changes to the most favorable conformations of the peptides. However, the modifications have significant effects on the stabilities of the most populated states that depend on the modifications. Whereas dimethylation of lysine 4 or lysine 9 alone tends to stabilize the most populated states, double dimethylation and acetylation of both lysine 4 and lysine 9 reduce both the helical conformation and the stability of the most populated states significantly. The calculated melting temperatures showed that the doubly acetylated peptide has the lowest melting temperature (Tm = 324 K), which is notably lower than the melting temperatures of the other four peptides (Tm ≈ 346-350 K). In light of the existing experimental evidence, we propose that the changes in the dynamics of the modified variants contribute to their different functional roles.  相似文献   

9.
Haspin/Gsg2 is a kinase that phosphorylates histone H3 at Thr-3 (H3T3ph) during mitosis. Its depletion by RNA interference results in failure of chromosome alignment and a block in mitosis. Haspin, therefore, is a novel target for development of antimitotic agents. We report the development of a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) kinase assay for haspin. Histone H3 peptide was used as a substrate, and a europium-labeled H3T3ph phosphospecific monoclonal antibody was used to detect phosphorylation. A library of 137632 small molecules was screened at K(m) concentrations of ATP and peptide to allow identification of diverse inhibitor types. Reconfirmation of hits and IC( 50) determinations were carried out with the TR-FRET assay and by a radiometric assay using recombinant histone H3 as the substrate. A preliminary assessment of specificity was made by testing inhibition of 2 unrelated kinases. EC( 50) values in cells were determined using a cell-based ELISA of H3T3ph. Five compounds were selected as leads based on potency and chemical structure considerations. These leads form the basis for the development of specific inhibitors of haspin that will have clear utility in basic research and possible use as starting points for development of antimitotic anticancer therapeutics.  相似文献   

10.
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.  相似文献   

11.
12.
Posttranslational modifications such as phosphorylation, acetylation, and methylation play important roles in regulating the structures and functions of histones, which in turn regulate gene expression and DNA repair and replication. Histone-modifying enzymes, such as deacetylases, methyltransferases and demethylases, have been pursued as therapeutic targets for various diseases. However, detection of the activities of these enzymes in high-throughput cell-based formats has remained challenging. The authors have developed high-throughput LanthaScreen cellular assays for Histone H3 site-specific modifications. These assays use cells expressing green fluorescence protein-tagged Histone H3 transiently delivered via BacMam and terbium-labeled anti-Histone H3 modification-specific antibodies. Robust time-resolved F?rster resonance energy transfer signals were detected for H3 lysine-9 acetylation and dimethylation (H3K9me2), serine-10 phosphorylation, K4 di- and trimethylation, and K27 trimethylation. Consistent with previous reports, hypoxic stress increased K4 methylation levels, and methyltransferase G9a inhibitor UNC-0638 decreased K9me2 levels significantly, with little effects on other modifications. To demonstrate the utility of this assay platform in screening, the K9 acetylation assay was used to profile the Enzo Epigenetics Library. Twelve known HDAC inhibitors were identified as hits and followed up in a dose-response format. In conclusion, this assay platform enables high-throughput cell-based analysis of diverse types of posttranslational modifications of Histone H3.  相似文献   

13.
14.
15.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

16.
17.
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.  相似文献   

18.
19.
The Chromosome Passenger Complex (CPC) generates chromosome autonomous signals that regulate mitotic events critical for genome stability. Tip60 is a lysine acetyltransferase that is a tumor suppressor and is targeted for proteasomal degradation by oncogenic papilloma viruses. Mitotic regulation requires the localization of the CPC to inner centromeres, which is driven by the Haspin kinase phosphorylating histone H3 on threonine 3 (H3T3ph). Here we describe how Tip60 acetylates histone H3 at lysine 4 (H3K4ac) to block both the H3T3ph writer and the reader to ensure that this mitotic signaling cannot begin before prophase. Specifically, H3K4ac inhibits Haspin phosphorylation of H3T3 and prevents binding of the Survivin subunit to H3T3ph. Tip60 acetylates H3K4 during S/G2 at centromeres. Inhibition of Tip60 allows the CPC to bind centromeres in G2 cells, and targeting of Tip60 to centromeres prevents CPC localization in mitosis. The H3K4ac mark is removed in prophase by HDAC3 to initiate the CPC localization cascade. Together, our results suggest that Tip60 and HDAC3 temporally control H3K4 acetylation to precisely time the targeting of the CPC to inner centromeres.  相似文献   

20.
Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号