首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell potentials and K+ (86Rb) influx were determined for corn roots over a wide range of external K+ activity (K°) under control, anoxic, and uncoupled conditions. The data were analyzed using Goldman theory for the contribution of passive influx to total influx. For anoxic and uncoupled roots the K+ influx shows the functional relationship with K° predicted with constant passive permeability, although K+ permeability in uncoupled roots is about twice that of anoxic roots. In control roots the equation fails to describe K+ influx at low K°, but does so at high K°, with a gradual transition over the region where the electrical potential becomes equal to the equilibrium potential for K+ (ψ = EK). In the low K° range, where net K+ influx is energetically uphill, participation of an energy-linked K+ carrier is indicated. In the high K° range, K+ influx becomes passive down the electrical gradient established by the cell potential. Since the cell potential includes a substantial electrogenic component, anoxia or uncoupling reduces passive influx.  相似文献   

2.
Effects of external ionic conditions ofD. discoideum cells were examined in relation to intracellular ionic concentrations, the activity of pyruvate kinase and the amount of ATP. Main components of metal cations in heat extracts of vegetative cells were K+, Na+, Mg2+ and Ca2+ whose concentrations in a cell were about 35.0, 3.6, 10.6 and 2.3 mM, respectively. External Na+ at the concentration more than 50 mM inhibited the formation of cell aggregates in the presence of 10?4M Ca2+. Such an inhibitory effect of Na+ was completely nullified by the addition of more than 10 mM K+. External Na+ caused a rapid decrease in intracellular K+, but an increase in intracellular Na+. Furthermore, it was found that the cells containing a high concentration of Na+ can develop normally in the presence of exogenous 10 mM K+, where intracellular K+ was maintaned at about 30 mM, irrespective of a high concentration of intracellular Na+ (about 30 mM). These suggest that the Na+-inhibition of the development is caused by a decrease in intracellular K+, but not by an increase in intracellular Na+. Pyruvate kinase extracted from the organism required K+ for its activation. The vegetative cells incubated in 50 mM Na+ contained only about 10 mM K+ which is insufficient for the enzyme activation. However, the amount of ATP in the cells containing less K+ was similar to that in those with much K+. These results are discussed in relation to the activity of glycolysis.  相似文献   

3.
Recently we have shown that Nerve Growth Factor (NGF) influences the movement of Na+ across the membrane of chick embryo dorsal root ganglion (DRG) cells. When cell dissociates from 8-day embryonic chick DRG, equilibrated with 86Rb+ (a K+ analog) in the presence of NGF, were transferred to NGF-free medium a marked loss of intracellular K+ occurred over several hours. The time course of K+ loss was similar to the time course of Na+ accumulation which occurs in the absence of NGF. NGF-deprived, K+-depleted DRG cells reaccumulated K+ within minutes of delayed NGF presentation, just as delayed NGF administration results in the rapid extrusion of Na+ from Na+-loaded cells. Restoration of K+ competence was dependent upon NGF concentration. The occurrence of this K+ response to exogenous NGF in other ganglionic preparations correlated with traditional responses to NGF in culture and previously observed Na+ responses. Neither the development nor the expression of the ionic defect (K+ depletion, Na+ filling) during NGF deprivation required the presence of both cations in the medium. NGF-dependent restoration of intracellular K+ in NGF-deprived chick DRG cells required the presence of intracellular Na+, and NGF-dependent extrusion of Na+ required extracellular K+. Thus NGF appears to influence the coupled (active) movements of Na+ and K+ across the membrane of its target cells, possibly by means of the classical Na+, K+-ATPase pump.  相似文献   

4.
In the previous paper, we showed that the K+ channels of the mouse neuroblastoma cell (clone N-18) are closed at low concentration of external K+ ([K+]0) including the physiological concentration for the cells. In the present study, the origin of the resting membrane potential of N-18 cells has been examined. (1) The resting membrane potential of N-18 cells was depolarized by increasing concentration of the polyvalent cations (La3+, Fe3+, Co2+, Ca2+, Sr2+, Mg2+) and by decreasing the pH of the medium. The input membrane resistance was slightly increased during the depolarization. The depolarization was not explained in terms of the diffusion of the cations across the membrane, since the trivalent cations of greater ionic size were effective at much lower concentrations than the divalent cations. The results obtained from the measurements of 86Rb efflux suggested that the depolarization cannot be explained in terms of blocking of the K+ channels by the cations. (2) An increase in Ca2+ concentration from 0.3 to 1.8 mM induced depolarization of about 10 mV at low [K+]0 where the K+ channels are closed, but did not induce any depolarization at high [K+]0 where the channels are open. (3) In order to estimate the changes in the zeta-potential, the electrophoretic mobility of N-18 cells was measured under various conditions. There was a close correlation between the changes in the zeta-potential and those in the membrane potential in response to the polyvalent cations and proton. On the other hand, an increase in K+-concentration in the medium, which induced a large depolarization in the cells, did not affect the zeta-potential. (4) The results obtained were explained by an electrical circuit model for the membranes of N-18 cells. In this model, an electrical circuit for the membrane part carrying no selective ionic channels, in which changes in the surface potential directly affect the transmembrane potential, is connected in parallel to the usual circuit model representing selective ionic channel systems. It was concluded that the surface potential contributes significantly to the resting membrane potential of N-18 cells at low [K+]0 where the K+ channels are closed.  相似文献   

5.
Na+, K+-ATPase is ubiquitously expressed in the plasma membrane ofall animal cells where it serves as the principal regulator of intracellularion homeostasis. Na+, K+-ATPase is responsible for generating andmaintaining transmembrane ionic gradients that are of vital importance forcellular function and subservient activities such as volume regulation, pHmaintenance, and generation of action potentials and secondary activetransport. The diversity of Na+, K+-ATPase subunit isoforms andtheir complex spatial and temporal patterns of cellular expression suggestthat Na+, K+-ATPase isozymes perform specialized physiologicalfunctions. Recent studies have shown that the subunit isoformspossess considerably different kinetic properties and modes of regulationand the subunit isoforms modulate the activity, expression and plasmamembrane targeting of Na+, K+-ATPase isozymes. This review focuseson recent developments in Na+, K+-ATPase research, and in particular reportsof expression of isoforms in various tissues and experiments aimed atelucidating the intrinsic structural features of isoforms important forNa+, K+-ATPase function.  相似文献   

6.
The endonuclease DFF40/CAD mediates regulated DNA fragmentation and chromatin condensation in cells undergoing apoptosis. Here we report the enzyme's co-factor requirements, and demonstrate that the ionic changes that occur in apoptotic cells maximize DFF40/CAD activity. The nuclease requires Mg2+, exhibits a trace of activity in the presence of Mn2+, is not co-stimulated by Ca2+, is inhibited by Zn2+ or Cu2+, and has high activity over a rather broad pH range (7.0–8.5). The enzyme is thermally unstable, and is rapidly inactivated at 42°C. Enzyme activity is markedly affected by ionic strength. At the optimal [K+] of 50–125 mM, which is in the range of the cytoplasmic [K+] for cells undergoing apoptosis, the activity of DFF40/CAD for naked DNA cleavage is about 100-fold higher than at 0 or 200 mM [K+]. Although these ranges of ionic strength do not affect DFF40 homo-oligomer formation, at higher ionic strengths the enzyme introduces single-stranded nicks into supercoiled DNA.  相似文献   

7.
Total content of water, extracellular space (ES), Na+, K+, and Cl in the isolated chick retina were measured in the presence (test) or absence (control) of spreading depression (SD). During SD in medium with 0.5 mM or 2 mM MgSO4, there is an increase in the intracellular concentration of Na+ and Cl and a decrease in the intracellular concentration of K+. A decrease in the ES was only found in the medium with 2 mM MgSO4 together with a diminshed outmovement of K+. We suggest that a decrease in the ES is due to an increased absorption of K+ by the Muller cells, causing its swelling and consequently a decrease of the ES.The addition of sucrose (17 mM) to the incubation medium as the extracellular marker markedly decreased the intracellular concentration of Cl in control retinas, blocked the inward movement of this ion to the tissue during SD and also changed the K+ movement during the phenomenon in medium with 2 mM MgSO4. We suggest that Cl is an important ion in the ionic balance of the Muller cells and that sucrose must have its site of action that these cells.  相似文献   

8.
The very existence of higher metazoans depends on the vectorial transport of substances across epithelia. A crucial element of this transport is the membrane enzyme Na+,K+-ATPase. Not only is this enzyme distributed in a polarized manner in a restricted domain of the plasma membrane but also it creates the ionic gradients that drive the net movement of glucose, amino acids, and ions across the entire epithelium. In a previous work, we have shown that Na+,K+-ATPase polarity depends on interactions between the β subunits of Na+,K+-ATPases located on neighboring cells and that these interactions anchor the entire enzyme at the borders of the intercellular space. In the present study, we used fluorescence resonance energy transfer and coprecipitation methods to demonstrate that these β subunits have sufficient proximity and affinity to permit a direct interaction, without requiring any additional extracellular molecules to span the distance.  相似文献   

9.
Summary Na+, K+-ATPase plays a central role in the ionic and osmotic homeostasis of cells and in the movements of electrolytes and water across epithelial boundaries. Microscopic localization of the enzyme is, therefore, of crucial importance in establishing the subcellular routes of electrolyte flow across structurally complex and functionally polarized epithelia. Recently developed approaches to the localization of Na+, K+-ATPase are reviewed. These methods rely on different properties of the enzyme and encompass cytochemical localization of the K+-dependent nitrophenylphosphatase component of the enzyme, autoradiographic localization of tritiated ouabain binding sites, and immunocytochemical localization of the holoenzyme and of its catalytic subunit. The rationales for each of these techniques are outlined as are the critieria that have been established to validate each method. The observed localization of Na+, K+-ATPase in various tissues is discussed, particularly as it relates to putative and hypothetical mechanisms that are currently thought to mediate reabsorptive and secretory electrolyte transport.  相似文献   

10.
Ionic composition of the haemolymph and electrophysiological responses of tarsal taste hairs were determined for individual flies of the species Calliphora vicina, in order to test the hypothesis that electrophysiological response values of individual flies are correlated with the ionic composition. Instead of flame photometry we used isotachophoresis to determine the ionic composition; only non-bound ions contribute to the result. Because of this we found lower concentration values than those reported so far. There was a strong correlation between the concentrations of the cations Na+, K+ and Mg2+, while Ca2+ was not related with any other cation. A significant correlation was shown to exist between the response of taste cells and the Na+, K+ and Ca2+ content in the haemolymph. These correlations explain, at least partly, the systematic differences in taste cell responses between flies, as reflected in interindividual variability.  相似文献   

11.
Manifestations of a cooperative interaction between ion-adsorbing sites in cells include steep, sigmoidal equilibrium adsorption isotherms of K+ and Na+, critical temperature transitions of net exchanges of Na+ for K+, and the allosteric nature of the effects of ligands on cellular K+ and Na+. Cooperative ionic adsorption is described by a onedimensional Ising model. The experimentally-determined equilibrium parameters permit prediction of the kinetics of exchange of K+ for Na+ (the approach to equilibrium) by stochastic or hydrodynamic solutions of a time-dependent Ising model. Studies of the rates of self-exchange of adsorbed ions reveal properties of the cooperatively interacting adsorption sites and their dependence on temperature and chemical potential. High rates of isotopic exchanges of K+ and Na+ occur near the transition point. This is explained by the hypothesis of an increase in susceptibility of the ensemble to slight variations of {ie93-1} or {ie93-2} near the phase transition, which leads to an increase in microscopic fluctuations within the ensemble. It is suggested that the isotopic ionic exchange experiment may be a means to explore the microscopic states of the ensemble and their transition probabilities.  相似文献   

12.
Summary The cell membrane K+-activated phosphatase activity was measured in reconstituted ghosts of human red cells having different ionic contents and incubated in solutions of varying ionic composition. When K+-free ghosts are suspended in K+-rich media, full activation of the phosphatase is obtained. Conversely, very little ouabainsensitive activity is detected in K+-rich ghosts suspended in K+-free media. These results, together with the fact that Na+ competitively inhibits the effects of K+ only when present externally, show that the K+ site of the membrane phosphatase is located at the outer surface of the cell membrane. The Mg++ requirements for K+ activation of the membrane phosphatase are fulfilled by internal Mg++. Addition of intracellular Na+ to ATP-containing ghosts raises the apparent affinity of the enzyme for K+, suggesting that the sites where ATP and Na+ produce this effect are located at the inner surface of the cell membrane. The asymmetrical features of the membrane phosphatase are those expected from the proposed role of this enzyme in the Na+–K+-ATPase system.The authors are established investigators of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

13.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

14.
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 μM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.  相似文献   

15.
Ionic mechanisms of salt stress perception were investigated by non‐invasive measurements of net H+, K+, Ca2+, Na+, and Cl? fluxes from leaf mesophyll of broad bean (Vicia faba L.) plants using vibrating ion‐selective microelectrodes (the MIFE technique). Treatment with 90 m M NaCl led to a significant increase in the net K+ efflux and enhanced activity of the plasma membrane H+‐pump. Both these events were effectively prevented by high (10 m M ) Ca2+ concentrations in the bath. At the same time, no significant difference in the net Na+ flux has been found between low‐ and high‐calcium treatments. It is likely that plasma membrane K+ and H+ transporters, but not the VIC channels, play the key role in the amelioration of negative salt effects by Ca2+ in the bean mesophyll. Experiments with isotonic mannitol application showed that cell ionic responses to hyperosmotic treatment are highly stress‐specific. The most striking difference in response was shown by K+ fluxes, which varied from an increased net K+ efflux (NaCl treatment) to a net K+ influx (mannitol treatment). It is concluded that different ionic mechanisms are involved in the perception of the ‘ionic’ and ‘osmotic’ components of salt stress.  相似文献   

16.
Cadmium (Cd2+) interferes with the uptake, transport and utilization of several macro‐ and micronutrients, which accounts, at least in part, for Cd2+ toxicity in plants. However, the mechanisms underlying Cd2+ interference of ionic homeostasis is not understood. Using biophysical techniques including membrane potential measurements, scanning ion‐selective electrode technique for non‐invasive ion flux assays and patch clamp, we monitored the effect of Cd2+ on calcium (Ca2+) and potassium (K+) transport in root hair cells of rice. Our results showed that K+ and Ca2+ contents in both roots and shoots were significantly reduced when treated with exogenous Cd2+. Further studies revealed that three cellular processes may be affected by Cd2+, leading to changes in ionic homeostasis. First, Cd2+‐induced depolarization of the membrane potential was observed in root hair cells, attenuating the driving force for cation uptake. Second, the inward conductance of Ca2+ and K+ was partially blocked by Cd2+, decreasing uptake of K+ and Ca2+. Third, the outward K+ conductance was Cd2+‐inducible, decreasing the net content of K+ in roots. These results provide direct evidence that Cd2+ impairs uptake of Ca2+ and K+, thereby disturbing ion homeostasis in plants.  相似文献   

17.
H.Y. Nakatani  J. Barber  M.J. Minski 《BBA》1979,545(1):24-35
Thylakoid membranes isolated from peas have been subjected to ionic analyses using the technique of neutron activation. This has allowed the analyses of K+, Na+, Mg2+, Ca2+ and Cl? to be measured simultaneously on the same sample. By varying the ionic composition of the suspending medium it has been shown that these chloroplast membranes have no obvious chemical specificity for the inorganic cations studied and that the major controlling factor is the electrostatic neutralization of the surface negative charges. In agreement with the Gouy-Chapman theory and for the conditions used, divalent cations were preferentially attracted to the membrane surface. This finding, together with the ionic analysis of the unwashed thylakoids and of isolated intact chloroplasts, indicated that the major physiological surface cation is Mg2+ and that K+ is probably the main inorganic cation of the stroma. This conclusion is discussed in terms of counterion movement in response to light induced proton pumping at the thylakoid membrane.  相似文献   

18.
L G Foe  J L Trujillo 《Life sciences》1979,25(17):1529-1538
The monovalent cations NH4+, K+, and Rb+ activate pig liver phosphofructokinase by increasing the maximal velocity. In the presence of these cations the enzyme retains sigmoid kinetics with respect to fructose-6-phosphate. However, these cations bring about a decrease in the [S]0.5 for fructose-6-phosphate to an extent directly proportional to their ionic volumes. The apparent dissociation constants of NH4+, K+, and Rb+ for the enzyme at 0.5 mM ATP and 4 mM Fru6P are 0.2 mM, 8 mM, and 15 mM, respectively. The maximal velocity of the enzyme in the presence of saturating concentrations of Rb+ is about 70% of that seen with NH4+ or K+. The monovalent cations Li+, Na+, and Cs+ inhibit the enzyme at high concentrations (> 50 mM) by decreasing the maximal velocity. Although the efficiency of inhibition by these cations qualitatively increases with decreasing size, there is no obvious quantitative relationship between efficiency of inhibition and any parameter of ionic size.  相似文献   

19.
Mechanical properties of catch connective tissue are greatly affected by its ionic environment. In order to understand the role of ions, a preparation was developed in which cellular activities were suppressed by treatment with 1% Triton X-100.The material used was body-wall dermis of the sea cucumber Holothuria leucospilota Brandt.The effects of the main cations in seawater (H+, Na+, K+, Ca2+, Mg2+) on the creep viscosity of the Triton model were compared with those of intact dermis.The comparison distinguished the site of action of ions. K+ had its main effect on cells that control the catch mechanism, whereas Ca2+ worked directly on extracellular materials. H+, Na+ and Mg2+ had both effects.  相似文献   

20.
In order to clarify whether or not the electronegative olfactory mucosal potentials (EOG) are generator potentials, the effects of changed ionic enviroment were studied. The EOG decreased in amplitude and in some cases nearly or completely disappeared, when Na+ in the bathing Ringer solution was replaced by sucrose, Li+, choline+, tetraethylammonium+ (TEA), or hydrazine. In the K+-free Ringer solution, the negative EOG's initially increased and then decreased in amplitude. In Ringer's solution with increased K+, the negative EOG's increased in amplitude. When K+ was increased in exchange for Na+ in Ringer's solution, the negative EOG's decreased, disappeared, and then reversed their polarity (Fig. 6). Next, when the K+ was replaced by equimolar sucrose, Li+, choline+, TEA+, hydrazine, or Na+, the reversed potentials recovered completely only in Na+-Ringer's solution, but never in the other solutions. Thus, the essential role of Na+ and K+ in the negative EOG's was demonstrated. Ba++ was found to depress selectively the electropositive EOG, but it hardly decreased and never increased the negative EOG. Hence, it is concluded that Ba++ interferes only with Cl- influx, and that the negative EOG's are elicited by an increase in permeability of the olfactory receptive membrane to Na+ and K+, but not to Cl-. From the ionic mechanism it is inferred that the negative EOG's are in most cases composites of generator and positive potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号