首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression.  相似文献   

2.
Wang L  Li C  Guo H  Kern TS  Huang K  Zheng L 《PloS one》2011,6(8):e23194

Background

Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R) injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.

Methodology/Principal Findings

Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL) were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%–0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr), and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.

Conclusions/Significance

Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.  相似文献   

3.
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are c AMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion(t MCAO) was performed on Epac1-deficient(Epac1-/-) mice, Epac2-deficient(Epac2-/-) mice, and their wild type counterparts(Epac1+/+ and Epac2+/+). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After t MCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4(AQP4), glial fibrillary acidic protein(GFAP), peroxiredoxin 6(Prx6) were observed in ipsilateral retinae. Epac2-/- ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2+/+. However, Epac1-/- ipsilateral retinae displayed similar pathology as those in Epac1+/+ mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.  相似文献   

4.
The retina is protected from somatic circulation by the blood-retinal barrrier (BRB) composed of tight junctions between retinal vascular endothelial cells (the inner BRB) and those between retinal pigment epithelial cells (the outer BRB). Our recent studies showed that glial cell line-derived neurotrophic factor (GDNF) secreted from astrocytes regulates the permeability of the BBB. In the present study, we immunohistochemically examined the expression of GDNF, neurturin (NTN) and their receptors, GFRalpha1 for GDNF and GFRalpha2 for NTN, because the capillaries of the inner BRB show specialization very similar to the blood-brain barrier (BBB). GDNF and NTN were detected in glial fibrillary acidic protein (GFAP)-positive cells, including Müller cells. GFRalpha1 and GFRalpha2 were localized in von Willebrand factor-positive cells. GDNF and NTN enhanced the barrier function of endothelial cells derived from porcine brain cortex. These results strongly suggest that the barrier function of the BRB is regulated by GDNF and NTN secreted from glial cells, like the BBB.  相似文献   

5.
Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy.  相似文献   

6.
Cheung SS  Leung JW  Lam AK  Lam KS  Chung SS  Lo AC  Chung SK 《PloS one》2011,6(10):e26184
The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.  相似文献   

7.
Poly(ADP-ribose) polymerase (PARP) inhibitors have neuroprotective effects after retinal ischemia and reperfusion (I/R) injury, but mechanisms of this action are not clear. A second generation PARP inhibitor, GPI 15427, was administrated to mice to investigate the possible mechanisms underlying its neuroprotective effects after retinal I/R injury. Ischemia was induced by increasing intraocular pressure to 80-90 mm Hg for 60 min followed by reperfusion, and mice were treated with GPI 15427 (40 mg/kg(-1) day(-1), orally) 2 days before or 1 day after injury. Histopathology caused by the retinal I/R injury was estimated by TUNEL assay and histological analyses. Relative gene expressions were evaluated by RT-PCR, Western blotting and immunohistological studies. GPI 15427 inhibited the retinal I/R-induced PARP activation and glial cell activation. GPI 15427 also significantly inhibited the I/R-induced neurodegeneration, as well as increase in TUNEL-positive cells. I/R-induced PERK-eIF2α-CHOP activation and Bip over-expression were inhibited by GPI 15427, while it did not suppress I/R-induced CHOP over-expression and degeneration of retinal capillaries. Our results suggest that GPI 15427 inhibited retinal I/R-induced neurodegeneration and glial cell activation, and this was associated with an effect of the drug to suppress PERK-eIF2α-CHOP activation and Bip over-expression. These results provide evidence that GPI 15427 inhibits retinal I/R injury at least in part via inhibition of endoplasmic reticulum stress.  相似文献   

8.
AimsWe previously reported that cysteinyl leukotriene receptor 2 (CysLT2) mediates ischemic astrocyte injury, and leukotriene D4-activated CysLT2 receptor up-regulates the water channel aquaporin 4 (AQP4). Here we investigated the mechanism underlying CysLT2 receptor-mediated ischemic astrocyte injury induced by 4-h oxygen-glucose deprivation and 24-h recovery (OGD/R).Main methodsPrimary cultures of rat astrocytes were treated by OGD/R to construct the cell injury model. AQP4 expression was inhibited by small interfering RNA (siRNA). The expressions of AQP4 and CysLTs receptors, and the MAPK signaling pathway were determined.Key findingsOGD/R induced astrocyte injury, and increased expression of the CysLT2 (but not CysLT1) receptor and AQP4. OGD/R-induced cell injury and AQP4 up-regulation were inhibited by a CysLT2 receptor antagonist (Bay cysLT2) and a non-selective CysLT receptor antagonist (Bay u9773), but not by a CysLT1 receptor antagonist (montelukast). Knockdown of AQP4 by siRNA attenuated OGD/R injury. Furthermore, OGD/R increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the cell injury and AQP4 up-regulation.SignificanceThe CysLT2 receptor mediates AQP4 up-regulation in astrocytes, and up-regulated AQP4 leads to OGD/R-induced injury, which results from activation of the ERK1/2 and p38 MAPK pathways.  相似文献   

9.
Retinal ischemia-reperfusion (I/R) often results in intractable visual impairments, where blood retinal barrier (BRB) homeostasis mediated by retinal pigment epithelium (RPE) and retinal microvascular endothelium (RME) is crucial. However, strategies targeting the BRB are limited. Thus, we investigated the inconclusive effect of lycopene (LYC) in retinal protection under I/R. LYC elevated cellular viability and reversed oxidative stress in aRPE-19 cells/hRME cells under I/R conditions based on oxygen-glucose deprivation (OGD) in vitro. Molecular analysis showed that LYC promoted NRF2 expression and enhanced the downstream factors of the KEAP1/NRF2/ARE pathway: LYC increased the activities of antioxidants, including SOD and CAT, whereas it enhanced the mRNA expression of HO-1 (ho-1) and NQO-1 (nqo-1). The activation resulted in restrained ROS and MDA. On the other hand, LYC ameliorated the damage to retinal function and morphology in a mouse I/R model, which was established by unilateral ligation of the left pterygopalatine artery/external carotid artery and reperfusion. LYC promoted the expression of NRF2 in both the neural retina and the RPE choroid in vivo. This evidence revealed the potential of LYC in retinal protection under I/R, uncovering the pharmacological effect of the KEAP1/NRF2/ARE pathway in BRB targeting. The study generates new insights into scientific practices in retinal research.  相似文献   

10.

Background

Müller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Müller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.

Methodology/Principal Findings

We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Müller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Müller glial cells, several other inner retinal cell types were transduced. To obtain Müller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1−/− retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Müller glial cells aligning retinal blood vessels.

Conclusions/Significance

Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells.  相似文献   

11.
We determined whether the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the sensory rat retina alters during ischemia-reperfusion, and whether HB-EGF affects the osmotic swelling which is a characteristic feature of Müller glial cells after ischemia. Transient retinal ischemia was induced by elevation of the intraocular pressure for 1 h. Western blots revealed an upregulation of HB-EGF in the retina at 1, 3, and 7 days after reperfusion. HB-EGF inhibited the swelling of glial cells in retinal slices, via stimulation of the synaptic release of glutamate and subsequent activation of glial metabotropic glutamate receptors which resulted in an autocrine release of purinergic receptor agonists. Finally, activation of A1 receptors resulted in opening of glial K(+) and Cl(-) channels. It is suggested that the increased expression of HB-EGF and the inhibition of glial cell swelling may be parts of a protective role of HB-EGF in the ischemic retina.  相似文献   

12.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

13.
The eye contains numerous water channel proteins and the roles of AQPs (aquaporins) in the retina are blurred, especially under disease conditions. The purpose of this study was to investigate the expression of AQP9 gene and proteins affected by elevated IOP (intraocular pressure) in a rat model of glaucoma induced by intravitreous injection of hypertonic saline into the episcleral veins. The gene and protein expressions of AQP9 were investigated by real-time PCR and Western blotting. The immunoreactive expression of AQP9, AQP4 and GFAP (glial fibrillary acidic protein) in the optic nerve of rats exposed to experimentally elevated IOP was detected by immunofluorescence microscopy. The mRNA and protein expression levels of AQP9 were up-regulated in the retina of an animal model of glaucoma. The immunoreactivities of the AQP9, AQP4 and GFAP were also detected and increased in the optic nerve region. The expression of AQP9 was up-regulated in this glaucoma model and the immunoreactivities of the AQP4 and GFAP were also detected as co-localizing with AQP9 in the optic nerve region, indicating retina ganglion cells were surrounded by activated astrocytes. This may indicate that the injured neurons may rely on the astrocytes. The alterations of AQP expression may compensate the glaucomatous damage.  相似文献   

14.
Hyperhomocysteinemia is associated with an increase in the incidence of vascular diseases, including retinal vascular diseases. We examined the effects of high plasma levels of homocysteine on retinal glial cells and vascular endothelial growth factor (VEGF) expression. Male Sprague-Dawley rats were fed either a 3.0 g/kg homocystine diet or a control diet for 2 week. The homocystine-diet group had higher plasma levels of homocysteine and thiobarbituric acid reactive substances (TBARSs) and lower plasma levels of folate, retinol, alpha-tocopherol, and retinal expression of CuZn superoxide dismutase (SOD) than the controls. The rats fed the homocystine-diet showed an increase in vimentin, glial fibrillary acidic protein (GFAP), and VEGF immunoreactivity in the retina as compared to the controls. The increase in vimentin immunoreactivity in the hyperhomocysteinemic rats was correlated with changes in GFAP immunoreactivity in astrocytes within the ganglion cell layer. We found for the first time that short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases VEGF expression in the retina.  相似文献   

15.
Retinal ischemia is a common feature associated with several ocular diseases, including diabetic retinopathy. In this study, we investigated the effect of a retinal ischemia and reperfusion (I/R) injury on protein levels via a quantitative shotgun strategy using stable isotope dimethyl labeling combined with LC-MS/MS analysis. Based on the relative quantitation data of 1088 proteins, 234 proteins showed a greater than 1.5-fold change following I/R injury, 194 of which were up-regulated and 40 were down-regulated. Gene ontology analysis revealed that after I/R injury, there was an increase in the metabolic-process related proteins but a decline in cell communication, system process and transport-related proteins. A ribosome protein network and a secreted protein network consisting of many protease inhibitors were identified among the up-regulated proteins, despite a suppression of the mammalian target of rapamycin (mTOR) pathway following the I/R injury. A synaptic-related protein network was found to be significantly down-regulated, implicating a functional reduction of neurons following a retinal I/R injury. Our results provide new systems-biology clues for the study of retinal ischemia.  相似文献   

16.
LPS-induced inflammation and changes in protein phosphorylation and the JAK-STAT pathway accompanying glial activation after LPS treatment, were followed by analyzing secreted proinflammatory cytokine levels. The administration of LPS caused tyrosine phosphorylation of STAT3 in retinae and induced glial fibrillary acidic protein. (GFAP) from the nerve fiber layer to the ganglion cell layer. Our results suggest that the LPS-induced activation of the JAK2/STAT3 signaling pathway may play a key role in the induction of astrogliosis. However, no significant increase in vimentin, OX-42 or inducible nitric oxide synthase (iNOS) expressions were observed after LPS administration. Sphingosine kinase catalyzes the conversion of sphingosine to sphingosine-1–phosphate (So-1-P), a sphingolipid metabolite that plays important roles in angiogenesis, inflammation, and cell growth. In the present study, it was found that sphingolipid metabolite levels were elevated in the serum and retinae of LPS-injected rats. To further investigate the chronic effect of increased So-1-P in the retina, So-1-P was infused intracerebroventricularly (i.c.v.) into rats using an osmotic minipump at 100 pmol/10 μl h-1 for 7 days, and was found to increase retinal GFAP expression. These observations suggest that LPS induces the activation of retinal astrocytes via JAK2/STAT3 and that LPS affects So-1-P generation. Our findings also suggest that elevated So-1-P in the retina and/or in serum could induce cytochemical alterations in LPS treated or inflamed retinae.  相似文献   

17.
Müller cells are the principal glial cells of the retina. Their end-feet form the limits of the retina at the outer and inner limiting membranes (ILM), and in conjunction with astrocytes, pericytes and endothelial cells they establish the blood-retinal barrier (BRB). BRB limits material transport between the bloodstream and the retina while the ILM acts as a basement membrane that defines histologically the border between the retina and the vitreous cavity. Labeling Müller cells is particularly relevant to study the physical state of the retinal barriers, as these cells are an integral part of the BRB and ILM. Both BRB and ILM are frequently altered in retinal disease and are responsible for disease symptoms.There are several well-established methods to study the integrity of the BRB, such as the Evans blue assay or fluorescein angiography. However these methods do not provide information on the extent of BRB permeability to larger molecules, in nanometer range. Furthermore, they do not provide information on the state of other retinal barriers such as the ILM. To study BRB permeability alongside retinal ILM, we used an AAV based method that provides information on permeability of BRB to larger molecules while indicating the state of the ILM and extracellular matrix proteins in disease states. Two AAV variants are useful for such study: AAV5 and ShH10. AAV5 has a natural tropism for photoreceptors but it cannot get across to the outer retina when administered into the vitreous when the ILM is intact (i.e., in wild-type retinas). ShH10 has a strong tropism towards glial cells and will selectively label Müller glia in both healthy and diseased retinas. ShH10 provides more efficient gene delivery in retinas where ILM is compromised. These viral tools coupled with immunohistochemistry and blood-DNA analysis shed light onto the state of retinal barriers in disease.  相似文献   

18.
Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin’s levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR management.  相似文献   

19.
The distribution of glial fibrillary acidic protein (GFAP) in normal human retina and in retinae with gliosis due to different diseases was studied by immunohistochemical methods. In normal retina, an evident GFAP-positivity is encountered only in the nerve fiber and ganglion cell layers; Müller cells do not stain. In retinal gliosis, together with an enhanced positivity of the perivascular and accessory glia, a strong staining for GFAP is observed in Müller cells, which extends from the inner to the outer limiting layers. A correlation between the intensity of immunohistochemical glial staining, its anatomical localization and the degree of retinal changes is suggested.  相似文献   

20.
Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号