首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abdominal aortic aneurysms (AAAs) expand as a consequence of extracellular matrix destruction, and vascular smooth muscle cell (VSMC) depletion. Transforming growth factor (TGF)-beta 1 overexpression stabilizes expanding AAAs in rat. Cyclosporine A (CsA) promotes tissue accumulation and induces TGF -beta1 and, could thereby exert beneficial effects on AAA remodelling and expansion. In this study, we assessed whether a short administration of CsA could durably stabilize AAAs through TGF-beta induction. We showed that CsA induced TGF-beta1 and decreased MMP-9 expression dose-dependently in fragments of human AAAs in vitro, and in animal models of AAA in vivo. CsA prevented AAA formation at 14 days in the rat elastase (diameter increase: CsA: 131.9±44.2%; vehicle: 225.9±57.0%, P = 0.003) and calcium chloride mouse models (diameters: CsA: 0.72±0.14 mm; vehicle: 1.10±0.11 mm, P = .008), preserved elastic fiber network and VSMC content, and decreased inflammation. A seven day administration of CsA stabilized formed AAAs in rats seven weeks after drug withdrawal (diameter increase: CsA: 14.2±15.1%; vehicle: 45.2±13.7%, P = .017), down-regulated wall inflammation, and increased αSMA-positive cell content. Co-administration of a blocking anti-TGF-beta antibody abrogated CsA impact on inflammation, αSMA-positive cell accumulation and diameter control in expanding AAAs. Our study demonstrates that pharmacological induction of TGF-beta1 by a short course of CsA administration represents a new approach to induce aneurysm stabilization by shifting the degradation/repair balance towards healing.  相似文献   

2.

Background

Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats.

Methodology/Principal Findings

Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals.

Conclusions/Significance

Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.  相似文献   

3.

Background

Treatment of coronary bifurcation lesions remains challenging, beyond the introduction of drug eluting stents. Dedicated stent systems are available to improve the technical approach to the treatment of these lesions. However dedicated stent systems have so far not reduced the incidence of stent restenosis. The aim of this study was to assess the expansion of the Multi-Link (ML) Frontier™ stent in human and porcine coronary arteries to provide the cardiologist with useful in-vitro information for stent implantation and selection.

Methodology/Principal Findings

Nine ML Frontier™ stents were implanted in seven human autopsy heart samples with known coronary artery disease and five ML Frontier™ stents were implanted in five porcine hearts. Proximal, distal and side branch diameters (PD, DD, SBD, respectively), corresponding opening areas (PA, DA, SBA) and the mean stent length (L) were assessed by micro-computed tomography (micro-CT). PD and PA were significantly smaller in human autopsy heart samples than in porcine heart samples (3.54±0.47 mm vs. 4.04±0.22 mm, p = 0.048; 10.00±2.42 mm2 vs. 12.84±1.38 mm2, p = 0.034, respectively) and than those given by the manufacturer (3.54±0.47 mm vs. 4.03 mm, p = 0.014). L was smaller in human autopsy heart samples than in porcine heart samples, although data did not reach significance (16.66±1.30 mm vs. 17.30±0.51 mm, p = 0.32), and significantly smaller than that given by the manufacturer (16.66±1.30 mm vs. 18 mm, p = 0.015).

Conclusions/Significance

Micro-CT is a feasible tool for exact surveying of dedicated stent systems and could make a contribution to the development of these devices. The proximal diameter and proximal area of the stent system were considerably smaller in human autopsy heart samples than in porcine heart samples and than those given by the manufacturer. Special consideration should be given to the stent deployment procedure (and to the follow-up) of dedicated stent systems, considering final intravascular ultrasound or optical coherence tomography to visualize (and if necessary optimize) stent expansion.  相似文献   

4.
Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, β = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments.  相似文献   

5.

Background

Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers.

Methods

The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1–6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed.

Results

NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period.

Conclusion

Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury.  相似文献   

6.

Background

Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration.

Methodology

Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05.

Principal Findings

After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods.

Conclusions

The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.  相似文献   

7.
Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: −300 to 0 HU, protein-rich: 1 to 300 HU, and bone: HU>300). Our open source CT/US fusion system differentiated soft tissue, bone and fat with a spatial accuracy of ∼1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using a 1 mm2 ROI resulted in mean HU of 68±44 within the tumor and −97±52 within the fat pad adjacent to the tumor (p<0.005). The tumor area measured by CT and histology was correlated (r2 = 0.92), while the area designated as fat decreased with increasing tumor size (r2 = 0.51). Analysis of CT and histology images of the tumor and surrounding fat pad revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors <75 mm3, 75–150 mm3 and >150 mm3, respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus.  相似文献   

8.

Background

With widespread resistance to antimonials in Visceral Leishmaniasis (VL) in the Indian subcontinent, Miltefosine (MIL) has been introduced as the first line therapy. Surveillance of MIL susceptibility in natural populations of Leishmania donovani is vital to preserve it and support the VL elimination program.

Methodology and Principal Findings

We measured in vitro susceptibility towards MIL and paromomycin (PMM) in L. donovani isolated from VL and PKDL, pre- and post-treatment cases, using an amastigote-macrophage model. MIL susceptibility of post-treatment isolates from cured VL cases (n = 13, mean IC50±SD = 2.43±1.44 µM), was comparable (p>0.05) whereas that from relapses (n = 3, mean IC50 = 4.72±1.99 µM) was significantly higher (p = 0.04) to that of the pre-treatment group (n = 6, mean IC50 = 1.86±0.75 µM). In PKDL, post-treatment isolates (n = 3, mean IC50 = 16.13±2.64 µM) exhibited significantly lower susceptibility (p = 0.03) than pre-treatment isolates (n = 5, mean IC50 = 8.63±0.94 µM). Overall, PKDL isolates (n = 8, mean IC50 = 11.45±4.19 µM) exhibited significantly higher tolerance (p<0.0001) to MIL than VL isolates (n = 22, mean IC50 = 2.58±1.58 µM). Point mutations in the miltefosine transporter (LdMT) and its beta subunit (LdRos3) genes previously reported in parasites with experimentally induced MIL resistance were not present in the clinical isolates. Further, the mRNA expression profile of these genes was comparable in the pre- and post-treatment isolates. Parasite isolates from VL and PKDL cases were uniformly susceptible to PMM with respective mean IC50 = 7.05±2.24 µM and 6.18±1.51 µM.

Conclusion

The in vitro susceptibility of VL isolates remained unchanged at the end of MIL treatment; however, isolates from relapsed VL and PKDL cases had lower susceptibility than the pre-treatment isolates. PKDL isolates were more tolerant towards MIL in comparison with VL isolates. All parasite isolates were uniformly susceptible to PMM. Mutations in the LdMT and LdRos3 genes as well as changes in the expression of these genes previously correlated with experimental resistance to MIL could not be verified for the field isolates.  相似文献   

9.
徐国皓  谷方  孙红丽  李婷  杨建军 《生物磁学》2013,(10):1878-1882
目的:应用三维有限元分析法研究牙种植体过盈植入对种植体-骨界面接触压力的影响。方法:选择直径为3.3 mm的ITI种植体和成人离体下颌骨,模拟种植体植入下颌骨内,过盈量为0.5 mm,建立三维有限元模型,应用ANSYS软件分析种植体-骨界面的应力分布情况。结果:种植体周围骨最大应力为48.796 MPa,应力分布均匀。种植体所受应力主要集中于颈部,最大应力值为87.832 MPa。结论:过盈量为0.5 mm时,种植体-骨界面所产生的应力值在骨组织所能承受的最大应力值范围内,种植体所受到的应力值远远小于钛的屈服强度,从生物力学角度,周围骨所受应力在骨组织能够承受范围,种植体也不会断裂,过盈联结在临床种植时有其可行性。  相似文献   

10.
It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo), isoflurane (iso) or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb) prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter). Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score), cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS) and microglia (via immunohistochemical staining for Iba1) were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm3; iso = 20.5±3.7 mm3; comb = 19.5±4.6 mm3). Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm3; iso = 31.5±4.0 mm3; comb = 44.2±6.2 mm3). Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.). The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm3; iso = 150±36/mm3; comb = 113±40/mm3). A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.  相似文献   

11.

Background

Defensive medicine is the practice of diagnostic or therapeutic measures conducted primarily as a safeguard against possible malpractice liability. We studied the extent, reasons, and characteristics of defensive medicine in the Israeli health care system.

Methods and Findings

Cross-sectional study performed in the Israeli health care system between April and July 2008 in a sample (7%) of board certified physicians from eight medical disciplines (internal medicine, pediatrics, general surgery, family medicine, obstetrics and gynecology, orthopedic surgery, cardiology, and neurosurgery). A total of 889 physicians (7% of all Israeli board certified specialists) completed the survey. The majority [60%, (95%CI 0·57–0·63)] reported practicing defensive medicine; 40% (95%CI 0·37–0·43) consider every patient as a potential threat for a medical lawsuit; 25% (95%CI 0·22–0·28) have previously been sued at least once during their career. Independent predictors for practicing defensive medicine were surgical specialty [OR = 1.6 (95%CI 1·2–2·2), p = 0·0004], not performing a fellowship abroad [OR = 1·5 (95%CI 1·1–2), p = 0·027], and previous exposure to lawsuits [OR = 2·4 (95%CI 1·7–3·4), p<0·0001]. Independent predictors for the risk of being sued during a physician''s career were male gender [OR = 1·6 (95%CI 1·1–2·2), p = 0·012] and surgery specialty [OR = 3·2 (95%CI 2·4–4·3), p<0·0001] (general surgery, obstetrics and gynecology, orthopedic surgery, and neurosurgery).

Conclusions

Defensive medicine is very prevalent in daily physician practice in all medical disciplines. It exposes patients to complications due to unnecessary tests and procedures, affects quality of care and costs, and undermines doctor-patient relationships. Further studies are needed to understand how to minimize defensive medicine resulting from an increased malpractice liability market.  相似文献   

12.
Kinetics of chondrocyte growth in cell-polymer implants   总被引:2,自引:0,他引:2  
In vitro cultivation of cartilage cells (chondrocytes) on biodegradable polyglycolic acid (PGA) scaffolds resulted in implants which could potentially be used to repair damaged joint cartilage or for reconstructive surgery. Cell growth kinetics were studied to define conditions under which the cellularity of implants made from isolated calf chondrocytes reached that of the parent calf cartilage. In static cultures, condrocyte growth rates decreased as either implant thickness or implant cell density increased. Over 4 weeks of cultivation, implant permeability to glucose decreased to 3% that of the plain polymer scaffold; this effect was attributed to the decrease in effective implant porosity associated with cartilage tissue regeneration.In a well-mixed culture, implants 1 cm in diameter by 0.3 cm thick maintained high cell growth rates over 7 weeks and hard normal cell densities. Regenerated cartilage with these dimensions is large enough to resurface small joints such as the trapezium bone at the base of the human thumb. Such implants could not be grown statically, since cell growth stopped at 3-4 weeks and cell densities remained below normal. Optimization of the tissue culture environment is thus essential in order to cultivate clinically useful cartilage implants in vitro. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.

Background

International humanitarian aid workers providing care in emergencies are subjected to numerous chronic and traumatic stressors.

Objectives

To examine consequences of such experiences on aid workers'' mental health and how the impact is influenced by moderating variables.

Methodology

We conducted a longitudinal study in a sample of international non-governmental organizations. Study outcomes included anxiety, depression, burnout, and life and job satisfaction. We performed bivariate regression analyses at three time points. We fitted generalized estimating equation multivariable regression models for the longitudinal analyses.

Results

Study participants from 19 NGOs were assessed at three time points: 212 participated at pre-deployment; 169 (80%) post-deployment; and 154 (73%) within 3–6 months after deployment. Prior to deployment, 12 (3.8%) participants reported anxiety symptoms, compared to 20 (11.8%) at post-deployment (p = 0·0027); 22 (10.4%) reported depression symptoms, compared to 33 (19.5%) at post-deployment (p = 0·0117) and 31 (20.1%) at follow-up (p = .00083). History of mental illness (adjusted odds ratio [AOR] 4.2; 95% confidence interval [CI] 1·45–12·50) contributed to an increased risk for anxiety. The experience of extraordinary stress was a contributor to increased risk for burnout depersonalization (AOR 1.5; 95% CI 1.17–1.83). Higher levels of chronic stress exposure during deployment were contributors to an increased risk for depression (AOR 1·1; 95% CI 1·02–1.20) comparing post- versus pre-deployment, and increased risk for burnout emotional exhaustion (AOR 1.1; 95% CI 1.04–1.19). Social support was associated with lower levels of depression (AOR 0·9; 95% CI 0·84–0·95), psychological distress (AOR = 0.9; [CI] 0.85–0.97), burnout lack of personal accomplishment (AOR 0·95; 95% CI 0·91–0·98), and greater life satisfaction (p = 0.0213).

Conclusions

When recruiting and preparing aid workers for deployment, organizations should consider history of mental illness and take steps to decrease chronic stressors, and strengthen social support networks.  相似文献   

14.
Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, P interaction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; P interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, P interaction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; P interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.  相似文献   

15.

Objective

Statin- and exercise-therapy are both clinically beneficial by preventing cardiovascular events in patients with coronary artery disease (CAD). However, there is no information on the vascular effects of the combination of statins and exercise on arterial wall stiffness in CAD patients.

Methods

The present study is a sub-analysis of PRESET study that determined the effects of 20-week treatment with statins (rosuvastatin, n = 14, atorvastatin, n = 14) combined with regular exercise on arterial wall stiffness assessed by measurement of brachial and ankle pulse wave velocity (baPWV) in CAD patients.

Results

The combination of statins and regular exercise significantly improved exercise capacity, lipid profile, including low- and high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein (hs-CRP), baPWV (baseline: 1747±355, at 20 weeks of treatment: 1627±271 cm/s, p = 0.008), and basophil count (baseline: 42±32, 20 weeks: 26±15 cells/µL, p = 0.007), but had no effect on blood pressure (baseline: 125±22, 20 weeks: 121±16 mmHg). Changes in baPWV correlated significantly with changes in basophil count (r = 0.488, p = 0.008), but not with age, lipids profile, exercise capacity, or hs-CRP.

Conclusion

In CAD patients, the combination treatment with statins and exercise resulted in significant amelioration of arterial wall stiffness, at least in part, through reduction of circulating basophils.  相似文献   

16.

Background

X-linked adrenoleukodystrophy (ALD) is a metabolic, peroxisomal disease that results from a mutation in the ABCD1 gene. The most severe course of ALD progression is the cerebral inflammatory and demyelinating form of the disease, cALD. To date there is very little information on the cytokine mediators in the cerebral spinal fluid (CSF) of these boys.

Methodology/Principal Findings

Measurement of 23 different cytokines was performed on CSF and serum of boys with cerebral ALD and patients without ALD. Significant elevations in CSF IL-8 (29.3±2.2 vs 12.8±1.1 pg/ml, p = 0.0001), IL-1ra (166±30 vs 8.6±6.5 pg/ml, p = 0.005), MCP-1 (610±47 vs 328±34 pg/ml, p = 0.002), and MIP-1b (14.2±1.3 vs 2.0±1.4 pg/ml, p<0.0001) were found in boys with cALD versus the control group. The only serum cytokine showing an elevation in the ALD group was SDF-1 (2124±155 vs 1175±125 pg/ml, p = 0.0001). The CSF cytokines of IL-8 and MCP-1b correlated with the Loes MRI severity score (p = 0.04 and p = 0.008 respectively), as well as the serum SDF-1 level (p = 0.002). Finally, CSF total protein was also significantly elevated in boys with cALD and correlated with both IL-8, MCP-1b (p = 0.0001 for both), as well as Loes MRI severity score (p = 0.0007).

Conclusions/Significance

IL-8, IL-1ra, MCP-1, MIP-1b and CSF total protein were significantly elevated in patients with cALD; IL-8, MCP-1b, and CSF total protein levels correlated with disease severity determined by MRI. This is the largest report of CSF cytokine levels in cALD to date, and identification of these key cytokines will provide further insight into disease progression and perhaps lead to improved targeted therapies.  相似文献   

17.

Background

The involvement of local and systemic oxidative stress in intraocular pressure (IOP) elevation and optic nerve damage has been hypothesized in the pathogenesis of glaucoma. To test this, we measured the systemic levels of prooxidants and antioxidants by analyzing the blood biochemistry in patients with glaucoma.

Methods

Peripheral blood samples were collected from Japanese patients with primary open-angle glaucoma (PG) (n = 206), exfoliation syndrome (EX) (n = 199), and controls (n = 126). Plasma levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured by diacron reactive oxygen metabolites (dROM), biological antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free radical analyzer.

Results

In the PG, EX, and control groups, the mean ± standard deviation values were 355±63, 357±69, and 348±56 (U. Carr), respectively, for dROM; 1,951±282, 1,969±252, and 2,033±252 (µmol/L), respectively, for BAP (µmol/L); and 614±98, 584±91, and 617±99 (µmol/L), respectively, for SH. The differences in the BAP values were significant between the PG and control groups (p = 0.0062), for SH between the EX and control groups (p = 0.0017), and for SH between the PG and EX groups (p = 0.0026). After adjustment for differences in age and sex among groups using multiple regression analysis, lower BAP values were correlated significantly with PG (p = 0.0155) and EX (p = 0.0049). Higher dROM values with and without glaucoma were correlated with female gender, and lower SH values with older age. There were no significant differences between the higher (≥21 mmHg) and lower (<21 mmHg) baseline IOPs in the PG group or between the presence or absence of glaucoma in the EX group.

Conclusions

Lower systemic antioxidant capacity that measured by ferric-reducing activity is involved in the pathogenesis of PG and EX.  相似文献   

18.
InnoPol, a poly((D,L)-lactic-co-glycolic acid) [PLGA] 65/35 scaffold manufactured by special gas foaming methods in Korea, was subjected to tests to evaluate the degradation and tissue compatibility characteristics and long-term systemic toxicity in mice and rats. C57BL/6 mice and SD rats were implanted subcutaneously with 3-mm- and 1-mm-thick InnoPol circular discs, 10 mm in diameter, respectively, and sacrificed 8, 12, and 24 weeks after implantation. No test material-related effects were observed in mortality, clinical signs, body weight gain, food and water consumption, ophthalmologic signs, urinalysis, hematology, serum biochemistry parameters and organ weights of all animals implanted with InnoPol. Also, there were no systemic symptoms including metabolic alterations and inflammatory reactions in either mice or rats. In addition, no gross pathological findings, except skin lesions around the implantation sites, were found in the major organs. Although mild inflammation at the site of InnoPol implantation was confirmed from hematoxylin and eosin or Masson's trichrome staining at 8-12 weeks, the reactions had disappeared at 24 weeks following complete degradation of the scaffold, leaving granulomatous tissues that were similar to surgical wounds in sham operation controls without implants. These results suggest that InnoPol possesses good mechanical properties and tissue compatibility and does not cause any systemic toxicity other than transient local inflammatory reactions at the implantation site, and that it might be useful in applications as a medical device for implantation.  相似文献   

19.
Wu J  Park JP  Dooley K  Cropek DM  West AC  Banta S 《PloS one》2011,6(10):e24948
There is a consistent demand for new biosensors for the detection of protein targets, and a systematic method for the rapid development of new sensors is needed. Here we present a platform where short unstructured peptides that bind to a desired target are selected using M13 phage display. The selected peptides are then chemically synthesized and immobilized on gold, allowing for detection of the target using electrochemical techniques such as electrochemical impedance spectroscopy (EIS). A quartz crystal microbalance (QCM) is also used as a diagnostic tool during biosensor development. We demonstrate the utility of this approach by creating a novel peptide-based electrochemical biosensor for the enzyme alanine aminotransferase (ALT), a well-known biomarker of hepatotoxicity. Biopanning of the M13 phage display library over immobilized ALT, led to the rapid identification of a new peptide (ALT5-8) with an amino acid sequence of WHWRNPDFWYLK. Phage particles expressing this peptide exhibited nanomolar affinity for immobilized ALT (Kd,app = 85±20 nM). The newly identified ALT5-8 peptide was then chemically synthesized with a C-terminal cysteine for gold immobilization. The performance of the gold-immobilized peptides was studied with cyclic voltammetry (CV), QCM, and EIS. Using QCM, the sensitivity for ALT detection was 8.9±0.9 Hz/(µg/mL) and the limit of detection (LOD) was 60 ng/mL. Using EIS measurements, the sensitivity was 142±12 impedance percentage change %/(µg/mL) and the LOD was 92 ng/mL. In both cases, the LOD was below the typical concentration of ALT in human blood. Although both QCM and EIS produced similar LODs, EIS is preferable due to a larger linear dynamic range. Using QCM, the immobilized peptide exhibited a nanomolar dissociation constant for ALT (Kd = 20.1±0.6 nM). These results demonstrate a simple and rapid platform for developing and assessing the performance of sensitive, peptide-based biosensors for new protein targets.  相似文献   

20.
A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep.Sleep continuity is disrupted in various medical disorders. We compared performance on a motor sequence learning task (MST) in relatively young subjects with obstructive sleep apnea (n = 16; apnea-hypopnea index 17.1±2.6/h [SEM]) to a carefully matched control group (n = 15, apnea-hypopnea index 3.7±0.4/h, p<0.001. Apart from AHI, oxygen nadir and arousal index, there were no significant differences between groups in total sleep time, sleep efficiency and sleep architecture as well as subjective measures of sleepiness based on standard questionnaires. In addition performance on the psychomotor vigilance task (reaction time and lapses), which is highly sensitive to sleep deprivation showed no differences as well as initial learning performance during the training phase. However there was a significant difference in the primary outcome of immediate overnight improvement on the MST between the two groups (controls = 14.7±4%, patients = 1.1±3.6%; P = 0.023) as well as plateau performance (controls = 24.0±5.3%, patients = 10.1±2.0%; P = 0.017) and this difference was predicted by the arousal index (p = 0.02) rather than oxygen saturation (nadir and time below 90% saturation. Taken together, this outcome provides evidence that there is a clear minimum requirement of sleep continuity in humans to ensure optimal sleep dependent memory processes. It also provides important new information about the cognitive impact of obstructive sleep apnea and challenges its current definitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号