首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The present study addressed EEG pattering during experimentally manipulated emotion. Film clips previously shown to induce happiness,joy, anger, disgust, fear/anxiety, sadness, as well as neutral control films, were presented to 30 university students while a 62-channel EEG was recorded, and a self-reported effect was described. Analyses revealed both emotion-specific and emotion-unspecific EEG pattering for the emotions under study. Induced positive and negative emotions were accompanied by hemispheric activation asymmetries in theta-2, alpha-2, and beta-1 EEG frequency bands. Emotions of joy and disgust induced lateralized a theta-2 power increase in anterior-temporal and frontal regions of the left hemisphere reflecting involvement of cognitive mechanisms in the emotional processing. Negative emotions of disgust and fear/anxiety were characterized by alpha-2 and beta-1 desynchronization of the right temporal-parietal cortex, suggesting its involvement in modulation of the emotion-related arousal.  相似文献   

4.
When you look into a mirror and move your eyes left to right, you will see that you cannot observe your own eye movements. This demonstrates the phenomenon of saccadic suppression: during saccadic eye movements, visual sensitivity is much reduced. Given that humans make more than 100,000 eye movements each day, it is clear why suppression is needed: without it, the motion on the retina would prevent us from seeing anything at all. Psychophysical data show that suppression is stimulus selective: it is strongest for the kind of stimuli that preferentially activate magnocellular thalamic neurons. This has led to the hypothesis that saccadic suppression selectively targets the magnocellular stream. We used fMRI to find brain areas with a stimulus-selective suppression of the BOLD signal that matches the psychophysical data. We found such a neural correlate of saccadic suppression in the dorsal stream (hMT+, V7) and in ventral area V4. These areas receive magnocellular input; hence our findings are consistent with the magnocellular hypothesis. The range of effects in our data and in single cell data, however, argues against a single thalamic mechanism that suppresses all cortical input. Instead, we speculate that saccadic suppression relies on multiple mechanisms operating in different cortical areas.  相似文献   

5.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

6.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

7.
8.
9.
10.
11.
12.
Pagnoni G  Cekic M  Guo Y 《PloS one》2008,3(9):e3083
Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This "default network" has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.  相似文献   

13.
The aim of this study was to estimate the heritability and describe the correlates of bone marrow lesions in knee subchondral bone. A sibpair design was used. T2- and T1-weighted MRI scans were performed on the right knee to assess bone marrow lesions at lateral tibia and femora and medial tibia and femora, as well as chondral defects. A radiograph was taken on the same knee and scored for individual features of osteoarthritis (radiographic osteoarthritis; ROA) and alignment. Other variables measured included height, weight, knee pain, and lower-limb muscle strength. Heritability was estimated with the program SOLAR (Sequential Oligogenetic Linkage Analysis Routines). A total of 115 siblings (60 females and 55 males) from 48 families, representing 95 sib pairs, took part. The adjusted heritability estimates were 53 ± 28% (mean ± SEM; p = 0.03) and 65 ± 32% (p = 0.03) for severity of bone marrow lesions at lateral and medial compartments, respectively. The estimates were reduced by 8 to 9% after adjustment for chondral defects and ROA (but not alignment). The adjusted heritability estimate was 99% for prevalent bone marrow lesions at both lateral and medial compartments. Both lateral and medial bone marrow lesions were significantly correlated with age, chondral defects, and ROA of the knee (all p < 0.05). Medial bone marrow lesions were also more common in males and were correlated with body mass index (BMI). Thus, bone marrow lesions have a significant genetic component. They commonly coexist with chondral defects and ROA but only share common genetic mechanisms to a limited degree. They are also more common with increasing age, male sex, and increasing BMI.  相似文献   

14.
Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.  相似文献   

15.
Protein stability remains one of the main factors limiting the realization of the full potential of protein therapeutics. Poly(ethylene glycol) (PEG) conjugation to proteins has evolved into an important tool to overcome instability issues associated with proteins. The observed increase in thermodynamic stability of several proteins upon PEGylation has been hypothesized to arise from reduced protein structural dynamics, although experimental evidence for this hypothesis is currently missing. To test this hypothesis, the model protein alpha-chymotrypsin (alpha-CT) was covalently modified with PEGs with molecular weights (M(W)) of 700, 2,000 and 5,000 and the degree of modification was systematically varied. The procedure did not cause significant tertiary structure changes. Thermodynamic unfolding experiments revealed that PEGylation increased the thermal transition temperature (T(m)) of alpha-CT by up to 6 degrees C and the free energy of unfolding [DeltaG(U) (25 degrees C)] by up to 5 kcal/mol. The increase in stability was found to be independent of the PEG M(W) and it leveled off after an average of four PEG molecules were bound to alpha-CT. Fourier-transformed infrared (FTIR) H/D exchange experiments were conducted to characterize the conformational dynamics of the PEG-conjugates. It was found that the magnitude of thermodynamic stabilization correlates with a reduction in protein structural dynamics and was independent of the PEG M(W). Thus, the initial hypothesis proved positive. Similar to the thermodynamic stabilization of proteins by covalent modification with glycans, PEG thermodynamically stabilizes alpha-CT by reducing protein structural dynamics. These results provide guidance for the future development of stable protein formulations.  相似文献   

16.
Wetlands Ecology and Management - Despite the ecological importance of wetland forests, their classification is still unsatisfactory, partly due to insufficient knowledge about the environmental...  相似文献   

17.
In the last 10 years, several authors including Griffiths and Matthen have employed classificatory principles from biology to argue for a radical revision in the way that we individuate psychological traits. Arguing that the fundamental basis for classification of traits in biology is that of ‘homology’ (similarity due to common descent) rather than ‘analogy’, or ‘shared function’, and that psychological traits are a special case of biological traits, they maintain that psychological categories should be individuated primarily by relations of homology rather than in terms of shared function. This poses a direct challenge to the dominant philosophical view of how to define psychological categories, viz., ‘functionalism’. Although the implications of this position extend to all psychological traits, the debate has centered around ‘emotion’ as an example of a psychological category ripe for reinterpretation within this new framework of classification. I address arguments by Griffiths that emotions should be divided into at least two distinct classes, basic emotions and higher cognitive emotions, and that these two classes require radically different theories to explain them. Griffiths argues that while basic emotions in humans are homologous to the corresponding states in other animals, higher cognitive emotions are dependent on mental capacities unique to humans, and are therefore not homologous to basic emotions. Using the example of shame, I argue that (a) many emotions that are commonly classified as being higher cognitive emotions actually correspond to certain basic emotions, and that (b) the “higher cognitive forms” of these emotions are best seen as being homologous to their basic forms.  相似文献   

18.
1. The maximum activities of the glycolytic enzymes hexokinase (HK) and phosphofructokinase (PFK) were measured in defatted homogenates of adipose tissue from nine homologous depots of 57 wild and captive mammals belonging to 17 species and eight orders and differing in body mass by six orders of magnitude. 2. Site-specific differences in the enzyme activities were similar in all terrestrial species and were not consistently related to adipocyte volume. 3. The specimen-mean maximum activities of HK and PFK did not correlate with body mass, body composition or natural diet. 4. When specimens of different body composition and body mass were compared, glycolytic enzyme activity per adipocyte was directly proportional to adipocyte volume. 5. Site-specific differences in collagen content of adipose tissue did not correspond to those adipocyte volume. When homologous depots of different specimens were compared, the collagen content of adipose tissue was directly proportional to body mass. 6. Adipose tissue of large cetaceans contains more collagen than predicted from the allometric equations fitted to the data from terrestrial mammals. 7. Neither the scaling of the collagen content with body mass nor the site-specific differences in its abundance are consistent with a role as protection or support for adjacent tissues. 8. There are consistent site-specific differences in the extracellular components of adipose tissue as well as in the structure and metabolism of the adipocytes. 9. Adipose tissue differs from most other tissues in that its maximum metabolic capacities do not scale to body mass. 10. Adjustment of the biochemical activity of adipose tissue to changes in body mass and body composition must depend upon neural and endocrine controls, not upon intrinsic differences in its metabolic capabilities.  相似文献   

19.
20.
UDP-N-acetylmuramoyl-l-alanine:d-glutamate (MurD) ligase catalyses the addition of d-glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-l-alanine (UMA). The crystal structures of Escherichia coli in the substrate-free form and MurD complexed with UMA have been determined at 2.4 A and 1.88 A resolution, respectively. The MurD structure comprises three domains each of a topology reminiscent of nucleotide-binding folds. In the two structures the C-terminal domain undergoes a large rigid-body rotation away from the N-terminal and central domains. These two "open" structures were compared with the four published "closed" structures of MurD. In addition the comparison reveals which regions are affected by the binding of UMA, ATP and d-Glu. Also we compare and discuss two structurally characterized enzymes which belong to the same ligase superfamily: MurD and folylpolyglutamate synthetase (FGS). The analysis allows the identification of key residues involved in the reaction mechanism of FGS. The determination of the two "open" conformation structures represents a new step towards the complete elucidation of the enzymatic mechanism of the MurD ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号