首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
越来越多的证据显示乳腺癌干细胞是导致乳腺癌发生、发展、复发和转移的根源。因此,模拟出与人乳腺癌发病机制相似的动物模型将对乳腺癌的治疗起着至关重要的作用。本文旨在介绍乳腺癌干细胞异种移植动物模型的制备方法、应用以及近年来的研究进展。  相似文献   

2.
The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for regeneration of tissues that can potentially replace/repair diseased and damaged tissue through differentiation into epithelial, myoepithelial and/or cuboidal/columnar cells in the udder with minimal risk of rejection and side effects.  相似文献   

3.
Ultrastructure of the putative stem cell niche in rat mammary epithelium   总被引:5,自引:0,他引:5  
There is now strong evidence that the stem cells of many tissues reside in specialized structures termed niches. The stem cell niche functions to house and regulate symmetric and asymmetric mitosis of stem cells in mammalian skin, mouse and human bone marrow, mouse brain, gut, and hair follicle, and Drosophila ovary and testis. This regulation is effected through the action of various signaling pathways such as Notch, Hedgehog, Wnt and others. The hormones of the estrous cycle, pregnancy and lactation that initiate growth in mouse mammary epithelium appear to act at a paracrine level to regulate mitosis through Notch receptors. Previous work has established that the putative stem cells of the mammary epithelium in several animal species reside near the basement membrane and never make contact with the ductal lumen. We show that these putative stem cells are found in anatomically specialized places created by the cytoplasmic extensions and modifications of neighboring differentiated cells. Such specializations may help to regulate stem cell activity by modulating molecular traffic to putative stem cells and contact with signaling molecules in the basement membrane. The histological characteristics of these putative niches vary as to the kinds of relationships the cells can have with the basement membrane and neighboring cells and as to how many stem or progenitor cells they may contain. This suggests a plasticity that may be relevant to the response of niches to tissue demands, such as wound healing, the periodic growth and regression of mammary epithelium, the process of mammary tumorigenesis therapeutic strategies for breast cancer.  相似文献   

4.
Hirai H 《Human cell》2002,15(4):190-198
Stem cells have been defined as clonogenic cells that undergo both self-renewal and differentiation to more committed progenitors and functionally specialized mature cells. Of late years, stem cells have been identified in a variety of tissues of an adult body. Depending on the source, they have the potential to form one or more, or even all cell types of an organism. Stem cell research provided some outstanding contributions to our understanding of developmental biology and offered much hope for cell replacement therapies overcoming a variety of diseases. The establishment of human ES cell lines enabled us to generate all tissues we comprise. Recently, excitement has been evoked by the controversial evidence that adult stem cells have a much higher degree of developmental plasticity than previously imagined. More recently, the existence of multipotent somatic stem cells in bone marrow has been reported. Combined with these discoveries and achievements as well as the developing technologies, scientists are now trying to bring stem cell therapies to the clinic.  相似文献   

5.
Hepatocyte transplantation is considered as an alternative to organ transplantation in particular for the treatment of liver metabolic diseases. However, due to the difficulties to obtain a large number of hepatocytes, new sources of cells are needed. These cells could be either of hepatic origin (hepatic stem cells) or extrahepatic such as mesenchymal stem cells or pluripotent stem cells (human embryonic stem cells [hESC] or iPS). We developed a new method to differentiate hESCs into fetal hepatocytes. These conditions recapitulate the main liver developmental stages, using fully defined medium devoid of animal products or unknown factors. The differentiated cells express many fetal hepatocytes markers (cytochrome P450 3A7, albumin, alpha-1-antitrypsin, etc.). The cells display specific hepatic functions (ammonia metabolism, excretion of indocyanin green) and are capable to engraft and express hepatic proteins two months after transplantation into newborn uPAxrag2gc-/- mouse liver. We have also showed that this approach is transposable to human iPS, and further studies on animal models will allow us to compare the in vivo potential of these two sources of pluripotent cells. Finally, only studies on large animals such as nonhuman primates will validate an eventual clinical application.  相似文献   

6.
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin alpha2beta1(hi) and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 microg/ml insulin (DMEM+10% FBS+Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.  相似文献   

7.
干细胞研究及以其为基础的再生医学技术已经成为生物医学发展水平的重要标志之一。对于大量组织器官缺损或功能障碍患者构成的巨大医疗市场来说,干细胞与再生医学的研究与开发将产生重要影响,其进程也日益加快。干细胞根据来源和获得方式可分为胚胎干细胞、重编程干细胞及成体干细胞等类型,不同类型干细胞特点不同,技术成熟程度处于不同发展阶段,在可能的使用过程中风险规避的策略不同,不同来源的干细胞产品针对的临床适应症和准入标准也不尽相同。在概述这三类干细胞基础研究的基础上,对应用现状和发展趋势进行述评,并提出相关的管理策略。  相似文献   

8.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

9.
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue invitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells(ESCs) and induced pluripotent stem cells(i PS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although i PS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-basedtherapy for ocular diseases.  相似文献   

10.
The green fluorescent protein (GFP) is among the most commonly used expression markers in biology. GFP-tagged cells have played a particularly important role in studies of cell lineage. Sensitive detection of GFP is crucially important for such studies to be successful, and problems with detection may account for discrepancies in the literature regarding the possible fate choices of stem cells. Here we describe a very sensitive technique for visualization of GFP. Using it we can detect about 90% of cells of donor origin while we could only see about 50% of these cells when we employ the methods that are in general use in other laboratories. In addition, we provide evidence that some cells permanently silence GFP expression. In the case of the progeny of bone marrow stem cells, it appears that the more distantly related they are to their precursors, the more likely it is that they will turn off the lineage marker.  相似文献   

11.
POU5F1 (more commonly known as OCT4/3) is one of the stem cell markers, and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotypes, we generated human cells of mesodermal origin with overexpression of the chimeric OCT4/3 gene with physiological co-activator EWS (product of the EWSR1 gene), which is driven by the potent EWS promoter by translocation. The cells expressed embryonic stem cell genes such as NANOG, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structures when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that the cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can be traced back to cells of embryonic phenotype by the OCT4/3 gene in collaboration with the potent cis-regulatory element and the fused co-activator. The cells generated in this study with overexpression of chimeric OCT4/3 provide us with insight into cell plasticity involving OCT4/3 that is essential for embryonic cell maintenance, and the complexity required for changing cellular identity.  相似文献   

12.
13.
Little is known about stem cells in organisms at the beginning of evolution. To characterize the regulatory events that control stem cells in the basal metazoan Hydra, we have generated transgenics which express eGFP selectively in the interstitial stem cell lineage. Using them we visualized stem cell and precursor migration in real-time in the context of the native environment. We demonstrate that interstitial cells respond to signals from the cellular environment, and that Wnt and Notch pathways are key players in this process. Furthermore, by analyzing polyps which overexpress the Polycomb protein HyEED in their interstitial cells, we provide in vivo evidence for a role of chromatin modification in terminal differentiation. These findings for the first time uncover insights into signalling pathways involved in stem cell differentiation in the Bilaterian ancestor; they demonstrate that mechanisms controlling stem cell behaviour are based on components which are conserved throughout the animal kingdom.  相似文献   

14.
Microbiological control in stem cell banks: approaches to standardisation   总被引:4,自引:0,他引:4  
The transplant of cells of human origin is an increasingly complex sector of medicine which entails great opportunities for the treatment of a range of diseases. Stem cell banks should assure the quality, traceability and safety of cultures for transplantation and must implement an effective programme to prevent contamination of the final product. In donors, the presence of infectious micro-organisms, like human immunodeficiency virus, hepatitis B virus, hepatitis C virus and human T cell lymphotrophic virus, should be evaluated in addition to the possibility of other new infectious agents (e.g. transmissible spongiform encephalopathies and severe acute respiratory syndrome). The introduction of the nucleic acid amplification can avoid the window period of these viral infections. Contamination from the laboratory environment can be achieved by routine screening for bacteria, fungi, yeast and mycoplasma by European pharmacopoeia tests. Fastidious micro-organisms, and an adventitious or endogenous virus, is a well-known fact that will also have to be considered for processes involving in vitro culture of stem cells. It is also a standard part of current good practice in stem cell banks to carry out routine environmental microbiological monitoring of the cleanrooms where the cell cultures and their products are prepared. The risk of viral contamination from products of animal origin, like bovine serum and mouse fibroblasts as a “feeder layer” for the development of embryonic cell lines, should also be considered. Stem cell lines should be tested for prion particles and a virus of animal origin that assure an acceptable quality.  相似文献   

15.
Stem cells embody the tremendous potential of the human body to develop, grow, and repair throughout life. Understanding the biologic mechanisms that underlie stem cell-mediated tissue regeneration is key to harnessing this potential. Recent advances in molecular biology, genetic engineering, and material science have broadened our understanding of stem cells and helped bring them closer to widespread clinical application. Specifically, innovative approaches to optimize how stem cells are identified, isolated, grown, and utilized will help translate these advances into effective clinical therapies. Although there is growing interest in stem cells worldwide, this enthusiasm must be tempered by the fact that these treatments remain for the most part clinically unproven. Future challenges include refining the therapeutic manipulation of stem cells, validating these technologies in randomized clinical trials, and regulating the global expansion of regenerative stem cell therapies.  相似文献   

16.
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.  相似文献   

17.
Stem cell therapy offers tremendous promise in the treatment of many incurable diseases. A variety of stem cell types are being studied but human embryonic stem cells (hESCs) appear to be the most versatile as they are pluripotent and can theoretically differentiate into all the tissues of the human body via the three primordial germ layers and the male and female germ lines. Currently, hESCs have been successfully converted in vitro into functional insulin secreting islets, cardiomyocytes, and neuronal cells and transfer of such cells into diabetic, ischaemic, and parkinsonian animal models respectively have shown successful engraftment. However, hESC-derived tissue application in the human is fraught with the problems of ethics, immunorejection, tumorigenesis from rogue undifferentiated hESCs, and inadequate cell numbers because of long population doubling times in hESCs. Human mesenchymal stem cells (hMSC) though not tumorigenic, also have their limitations of multipotency, immunorejection, and are currently confined to autologous transplantation with the genuine benefits in allogeneic settings not conclusively shown in large controlled human trials. Human Wharton's jelly stem cells (WJSC) from the umbilical cord matrix which are of epiblast origin and containing both hESC and hMSC markers appear to be less troublesome in not being an ethically controversial source, widely multipotent, not tumorigenic, maintain "stemness" for several serial passages and because of short population doubling time can be scaled up in large numbers. This report describes in detail the hurdles all these stem cell types have to overcome before stem cell-based therapy becomes a genuine reality.  相似文献   

18.
Cell therapy is one of the important therapeutic approaches in the treatment of many diseases such as cancer, degenerative diseases, and cardiovascular diseases. Among various cell types, which could be used as cell therapies, stem cell therapy has emerged as powerful tools in the treatment of several diseases. Multipotent stem cells are one of the main classes of stem cells that could originate from different parts of the body such as bone marrow, adipose, placenta, and tooth. Among several types of multipotent stem cells, tooth-derived stem cells (TDSCs) are associated with special properties such as accessible, easy isolation, and low invasive, which have introduced them as a good source for using in the treatment of several diseases such as neural injuries, liver fibrosis, and Cohrn’s disease. Here, we provided an overview of TDSCs particular stem cells from human exfoliated deciduous teeth and clinical application of them. Moreover, we highlighted molecular mechanisms involved in the regulation of dental stem cells fate.  相似文献   

19.
视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。  相似文献   

20.
DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用   总被引:4,自引:0,他引:4  
郭磊  李慧  韩之明 《遗传》2010,32(8):762-768
体细胞核移植在农业应用、生产疾病模型动物、转基因家畜或产生人胚胎干细胞来治疗人类的疾病方面有巨大的应用潜力。虽然已经成功克隆出多种哺乳动物, 但该技术仍存在一些未解决的问题, 包括产生克隆动物的效率低和克隆动物的异常等。异常的表观遗传重编程是克隆胚胎发育失败的一个重要因素。文章重点论述了DNA甲基化、组蛋白修饰及其与克隆胚胎发育的关系。了解表观遗传调控机制有助于解决核移植技术中存在的问题, 有利于更好地应用这项技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号