首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Infectious disease of livestock continues to be a cause of substantial economic loss and has adverse welfare consequences in both the developing and developed world. New solutions to control disease are needed and research focused on the genetic loci determining variation in immune-related traits has the potential to deliver solutions. However, identifying selectable markers and the causal genes involved in disease resistance and vaccine response is not straightforward. The aims of this study were to locate regions of the bovine genome that control the immune response post immunisation. 195 F2 and backcross Holstein Charolais cattle were immunised with a 40-mer peptide derived from foot-and-mouth disease virus (FMDV). T cell and antibody (IgG1 and IgG2) responses were measured at several time points post immunisation. All experimental animals (F0, F1 and F2, n = 982) were genotyped with 165 microsatellite markers for the genome scan.

Results

Considerable variability in the immune responses across time was observed and sire, dam and age had significant effects on responses at specific time points. There were significant correlations within traits across time, and between IgG1 and IgG2 traits, also some weak correlations were detected between T cell and IgG2 responses. The whole genome scan detected 77 quantitative trait loci (QTL), on 22 chromosomes, including clusters of QTL on BTA 4, 5, 6, 20, 23 and 25. Two QTL reached 5% genome wide significance (on BTA 6 and 24) and one on BTA 20 reached 1% genome wide significance.

Conclusions

A proportion of the variance in the T cell and antibody response post immunisation with an FDMV peptide has a genetic component. Even though the antigen was relatively simple, the humoral and cell mediated responses were clearly under complex genetic control, with the majority of QTL located outside the MHC locus. The results suggest that there may be specific genes or loci that impact on variation in both the primary and secondary immune responses, whereas other loci may be specifically important for early or later phases of the immune response. Future fine mapping of the QTL clusters identified has the potential to reveal the causal variations underlying the variation in immune response observed.  相似文献   

2.
Zheng G  Song K  Elston RC 《Human heredity》2007,63(3-4):175-186
We study a two-stage analysis of genetic association for case-control studies. In the first stage, we compare Hardy-Weinberg disequilibrium coefficients between cases and controls and, in the second stage, we apply the Cochran- Armitage trend test. The two analyses are statistically independent when Hardy-Weinberg equilibrium holds in the population, so all the samples are used in both stages. The significance level in the first stage is adaptively determined based on its conditional power. Given the level in the first stage, the level for the second stage analysis is determined with the overall Type I error being asymptotically controlled. For finite sample sizes, a parametric bootstrap method is used to control the overall Type I error rate. This two-stage analysis is often more powerful than the Cochran-Armitage trend test alone for a large association study. The new approach is applied to SNPs from a real study.  相似文献   

3.
Tian X  Joo J  Zheng G  Lin JP 《BMC genetics》2005,6(Z1):S107
We studied a trend test for genetic association between disease and the number of risk alleles using case-control data. When the data are sampled from families, this trend test can be adjusted to take into account the correlations among family members in complex pedigrees. However, the test depends on the scores based on the underlying genetic model and thus it may have substantial loss of power when the model is misspecified. Since the mode of inheritance will be unknown for complex diseases, we have developed two robust trend tests for case-control studies using family data. These robust tests have relatively good power for a class of possible genetic models. The trend tests and robust trend tests were applied to a dataset of Genetic Analysis Workshop 14 from the Collaborative Study on the Genetics of Alcoholism.  相似文献   

4.
5.
For most common diseases with heritable components, not a single or a few single-nucleotide polymorphisms (SNPs) explain most of the variance for these disorders. Instead, much of the variance may be caused by interactions (epistasis) among multiple SNPs or interactions with environmental conditions. We present a new powerful statistical model for analyzing and interpreting genomic data that influence multifactorial phenotypic traits with a complex and likely polygenic inheritance. The new method is based on Markov chain Monte Carlo (MCMC) and allows for identification of sets of SNPs and environmental factors that when combined increase disease risk or change the distribution of a quantitative trait. Using simulations, we show that the MCMC method can detect disease association when multiple, interacting SNPs are present in the data. When applying the method on real large-scale data from a Danish population-based cohort, multiple interactions are identified that severely affect serum triglyceride levels in the study individuals. The method is designed for quantitative traits but can also be applied on qualitative traits. It is computationally feasible even for a large number of possible interactions and differs fundamentally from most previous approaches by entertaining nonlinear interactions and by directly addressing the multiple-testing problem.  相似文献   

6.
Population-based case-control studies are a useful method to test for a genetic association between a trait and a marker. However, the analysis of the resulting data can be affected by population stratification or cryptic relatedness, which may inflate the variance of the usual statistics, resulting in a higher-than-nominal rate of false-positive results. One approach to preserving the nominal type I error is to apply genomic control, which adjusts the variance of the Cochran-Armitage trend test by calculating the statistic on data from null loci. This enables one to estimate any additional variance in the null distribution of statistics. When the underlying genetic model (e.g., recessive, additive, or dominant) is known, genomic control can be applied to the corresponding optimal trend tests. In practice, however, the mode of inheritance is unknown. The genotype-based chi (2) test for a general association between the trait and the marker does not depend on the underlying genetic model. Since this general association test has 2 degrees of freedom (df), the existing formulas for estimating the variance factor by use of genomic control are not directly applicable. By expressing the general association test in terms of two Cochran-Armitage trend tests, one can apply genomic control to each of the two trend tests separately, thereby adjusting the chi (2) statistic. The properties of this robust genomic control test with 2 df are examined by simulation. This genomic control-adjusted 2-df test has control of type I error and achieves reasonable power, relative to the optimal tests for each model.  相似文献   

7.
8.
9.
Two-stage analyses of genome-wide association studies have been proposed as a means to improving power for designs including family-based association and gene-environment interaction testing. In these analyses, all markers are first screened via a statistic that may not be robust to an underlying assumption, and the markers thus selected are then analyzed in a second stage with a test that is independent from the first stage and is robust to the assumption in question. We give a general formulation of two-stage designs and show how one can use this formulation both to derive existing methods and to improve upon them, opening up a range of possible further applications. We show how using simple regression models in conjunction with external data such as average trait values can improve the power of genome-wide association studies. We focus on case-control studies and show how it is possible to use allele frequencies derived from an external reference to derive a powerful two-stage analysis. An illustration involving the Wellcome Trust Case-Control Consortium data shows several genome-wide-significant associations, subsequently validated, that were not significant in the standard analysis. We give some analytic properties of the methods and discuss some underlying principles.  相似文献   

10.
Genomewide association studies are being conducted to unravel the genetic etiology of complex human diseases. Because of cost constraints, these studies typically employ a two-stage design, under which a large panel of markers is examined in a subsample of subjects, and the most-promising markers are then examined in all subjects. This report describes a simple and efficient method to evaluate statistical significance for such genome studies. The proposed method, which properly accounts for the correlated nature of polymorphism data, provides accurate control of the overall false-positive rate and is substantially more powerful than the standard Bonferroni correction, especially when the markers are in strong linkage disequilibrium.  相似文献   

11.
The Cochran-Armitage trend test (CATT) is well suited for testing association between a marker and a disease in case-control studies. When the underlying genetic model for the disease is known, the CATT optimal for the genetic model is used. For complex diseases, however, the genetic models of the true disease loci are unknown. In this situation, robust tests are preferable. We propose a two-phase analysis with model selection for the case-control design. In the first phase, we use the difference of Hardy-Weinberg disequilibrium coefficients between the cases and the controls for model selection. Then, an optimal CATT corresponding to the selected model is used for testing association. The correlation of the statistics used for selection and the test for association is derived to adjust the two-phase analysis with control of the Type-I error rate. The simulation studies show that this new approach has greater efficiency robustness than the existing methods.  相似文献   

12.
Genomewide association studies (GWAS) are being conducted to unravel the genetic etiology of complex diseases, in which complex epistasis may play an important role. One-stage method in which interactions are tested using all samples at one time may be computationally problematic, may have low power as the number of markers tested increases and may not be cost-efficient. A common two-stage method may be a reasonable and powerful approach for detecting interacting genes using all samples in both two stages. In this study, we introduce an alternative two-stage method, in which some promising markers are selected using a proportion of samples in the first stage and interactions are then tested using the remaining samples in the second stage. This two-stage method is called mixed two-stage method. We then investigate the power of both one-stage method and mixed two-stage method to detect interacting disease loci for a range of two-locus epistatic models in a case-control study design. Our results suggest that mixed two-stage method may be more powerful than one-stage method if we choose about 30% of samples for single-locus tests in the first stage, and identify less than and equal to 1% of markers for follow-up interaction tests. In addition, we compare both two-stage methods and find that our two-stage method will lose power because we only use part of samples in both two stages.  相似文献   

13.

Background  

Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot.  相似文献   

14.
Validation of genetic associations is understood to be a cornerstone for the scientific credibility of the results. To approach this topic, the general concept of genetic association studies is introduced briefly, followed by how the term 'validation' is used in the context of genetic association studies. As a central issue, reasons for the importance of validation and for failure of validation will be described.  相似文献   

15.
Li H 《Human genetics》2012,131(9):1395-1401
Many common human diseases are complex and are expected to be highly heterogeneous, with multiple causative loci and multiple rare and common variants at some of the causative loci contributing to the risk of these diseases. Data from the genome-wide association studies (GWAS) and metadata such as known gene functions and pathways provide the possibility of identifying genetic variants, genes and pathways that are associated with complex phenotypes. Single-marker-based tests have been very successful in identifying thousands of genetic variants for hundreds of complex phenotypes. However, these variants only explain very small percentages of the heritabilities. To account for the locus- and allelic-heterogeneity, gene-based and pathway-based tests can be very useful in the next stage of the analysis of GWAS data. U-statistics, which summarize the genomic similarity between pair of individuals and link the genomic similarity to phenotype similarity, have proved to be very useful for testing the associations between a set of single nucleotide polymorphisms and the phenotypes. Compared to single marker analysis, the advantages afforded by the U-statistics-based methods is large when the number of markers involved is large. We review several formulations of U-statistics in genetic association studies and point out the links of these statistics with other similarity-based tests of genetic association. Finally, potential application of U-statistics in analysis of the next-generation sequencing data and rare variants association studies are discussed.  相似文献   

16.
Robust linear regression methods in association studies   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
Zhao Y  Wang S 《Human heredity》2009,67(1):46-56
Study cost remains the major limiting factor for genome-wide association studies due to the necessity of genotyping a large number of SNPs for a large number of subjects. Both DNA pooling strategies and two-stage designs have been proposed to reduce genotyping costs. In this study, we propose a cost-effective, two-stage approach with a DNA pooling strategy. During stage I, all markers are evaluated on a subset of individuals using DNA pooling. The most promising set of markers is then evaluated with individual genotyping for all individuals during stage II. The goal is to determine the optimal parameters (pi(p)(sample ), the proportion of samples used during stage I with DNA pooling; and pi(p)(marker ), the proportion of markers evaluated during stage II with individual genotyping) that minimize the cost of a two-stage DNA pooling design while maintaining a desired overall significance level and achieving a level of power similar to that of a one-stage individual genotyping design. We considered the effects of three factors on optimal two-stage DNA pooling designs. Our results suggest that, under most scenarios considered, the optimal two-stage DNA pooling design may be much more cost-effective than the optimal two-stage individual genotyping design, which use individual genotyping during both stages.  相似文献   

19.
20.
Entropy-based SNP selection for genetic association studies   总被引:9,自引:0,他引:9  
Because of their abundance, density, and ease of practical use, single-nucleotide polymorphisms (SNPs) have become the major source of information for association gene mapping in humans. Sensible strategies for selecting practically useful SNPs are therefore required. Among the factors influencing the mapping utility of a given set of SNPs are (1) their individual diversity, (2) their haplotype structure in the population of interest, and (3) their physical distribution. We propose a strategy integrating these aspects into a single mapping utility measure, which is based upon Shannon entropy, and which maximizes the amount of information extracted from a genomic region under a Malecot model of linkage disequilibrium (LD) decay. The same utility measure has also been used to define a criterion guiding SNP discovery and rational decision-making about the continuation or termination of a mapping study. The proposed strategy performs consistently well in a data set comprising 549 German control individuals, genotyped for 136 SNPs from four genomic regions of different LD structure. Adoption of the method in practice is estimated to save up to 30% of genotyping load when compared with equidistant SNP localization or pair-wise LD minimization alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号