首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Guanine protein-coupled receptors (GPCRs) constitute a eukaryotic transmembrane protein family and function as “molecular switches” in the second messenger cascades and are found in all organisms between yeast and humans. They form the single, biggest drug-target family due to their versatility of action and their role in several physiological functions, being active players in detecting the presence of light, a variety of smells and tastes, amino acids, nucleotides, lipids, chemicals etc. in the environment of the cell. Comparative genomic studies on model organisms provide information on target receptors in humans and their function. The Japanese teleost Fugu has been identified as one of the smallest vertebrate genomes and a compact model to study the human genome, owing to the great similarity in its gene repertoire with that of human and other vertebrates. Thus the characterization of the GPCRs of Fugu would provide insights to the evolution of the vertebrate genome.

Results

We classified the GPCRs in the Fugu genome and our analysis of its 316 membrane-bound receptors, available on the public databases as well as from literature, detected 298 GPCRs that were grouped into five main families according to the GRAFS classification system (namely, Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin). We also identified 18 other GPCRs that could not be grouped under the GRAFS family and hence were classified as ‘Other 7TM’ receptors. On comparison of the GPCR information from the Fugu genome with those in the human and chicken genomes, we detected 96.83% (306/316) and 96.51% (305/316) orthology in GPCRs among the Fugu-human genomes and Fugu-chicken genomes, respectively.

Conclusions

This study reveals the position of pisces in vertebrate evolution from the GPCR perspective. Fugu can act as a reference model for the human genome for other protein families as well, going by the high orthology observed for GPCRs between Fugu and human. The evolutionary comparison of GPCR sequences between key vertebrate classes of mammals, birds and fish will help in identifying key functional residues and motifs so as to fill in the blanks in the evolution of GPCRs in vertebrates.
  相似文献   

2.

Background  

The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic.  相似文献   

3.

Background:  

Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown.  相似文献   

4.

Background  

G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates.  相似文献   

5.

Background  

The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ) of tandem genes and are hypothesized to provide a molecular code for specifying the remarkably-diverse neural connections in the central nervous system. Like mammals, the coelacanth, a lobe-finned fish, contains a single protocadherin locus, also arranged into α, β and γ clusters. Zebrafish, however, possesses two protocadherin loci that contain more than twice the number of genes as the coelacanth, but arranged only into α and γ clusters. To gain further insight into the evolutionary history of protocadherin clusters, we have sequenced and analyzed protocadherin clusters from the compact genome of the pufferfish, Fugu rubripes.  相似文献   

6.
Jones AK  Elgar G  Sattelle DB 《Genomics》2003,82(4):441-451
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission at nerve-muscle junctions and in the brain. However, the complete gene family of nAChRs has not so far been reported for any vertebrate organism. We have identified the complete nAChR gene family from the reference genome of the pufferfish, Fugu rubripes. It consists of 16 alpha and 12 non-alpha candidate subunits, making it the largest vertebrate nAChR gene family known to date. The gene family includes an unusual set of muscle-like nAChR subunits comprising two alpha1s, two beta1s, one delta, one epsilon, and one gamma. One of the beta1 subunits possesses an aspartate residue and N-glycosylation sites hitherto shown to be necessary for delta-subunit function. Potential Fugu orthologs of neuronal nAChR subunits alpha2-4, alpha6, and beta2-4 have been identified. Interestingly, the Fugu alpha5 counterpart appears to be a non-alpha subunit. Fugu possesses an expanded set of alpha7-9-like subunits and no alpha10 ortholog has been found. Two new candidate beta subtypes, designated beta5 and beta6, may represent subunits yet to be found in the human genome. The Fugu nAChR gene structures are considerably more diverse than those of higher vertebrates, with evidence of "intron gain" in many cases. We show, using RT-PCR, that the Fugu nAChR subunits are expressed in a variety of tissues.  相似文献   

7.

Background  

G protein-coupled receptors (GPCRs) transduce signals from extracellular space into the cell, through their interaction with G proteins, which act as switches forming hetero-trimers composed of different subunits (α,β,γ). The α subunit of the G protein is responsible for the recognition of a given GPCR. Whereas specialised resources for GPCRs, and other groups of receptors, are already available, currently, there is no publicly available database focusing on G Proteins and containing information about their coupling specificity with their respective receptors.  相似文献   

8.

Background  

Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs.  相似文献   

9.

Background  

The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs), but the GPCR(s) critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR) exist in C. elegans.  相似文献   

10.
G protein–coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human–chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chicken's ability and mode of detecting both bitter and sweet taste may differ from the human's. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download.  相似文献   

11.

Background  

The G-protein-coupled receptors (GPCRs) constitute one of the largest and most ancient superfamilies of membrane proteins. They play a central role in physiological processes affecting almost all aspects of the life cycle of an organism. Availability of the complete sets of putative members of a family from diverse species provides the basis for cross genome comparative studies.  相似文献   

12.

Background  

A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system.  相似文献   

13.

Background  

G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors.  相似文献   

14.
Phylogeny and expression of carbonic anhydrase-related proteins   总被引:1,自引:0,他引:1  

Background  

Carbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR.  相似文献   

15.
Plasminogen related growth factors (PRGFs) and their receptors play major roles in embryogenesis, tissue regeneration and neoplasia. In order to investigate the complexity and evolution of the PRGF receptor family we have cloned and sequenced three receptors for PRGFs in the teleost fish Fugu rubripes, a model vertebrate with a compact genome. One of the receptor genes isolated encodes the orthologue of mammalian MET, whilst the other two may represent Fugu rubripes orthologues of RON and SEA. This is the first time three PRGF receptors have been identified in a single species.  相似文献   

16.
The control of vertebrate development is facilitated by cis-regulatory sequences hardwired into the genome. Given that many developmental processes are strikingly similar across all backboned animals, it is reasonable to expect these sequences to be conserved at the nucleotide level, their potential for mutation being constrained by their function. Comparison between the genomes of highly divergent organisms allows such sequences to be identified and some of the most successful approaches have compared regions from the pufferfish, Fugu rubripes, with its distant mammalian relatives, rodents and humans. This review describes progress made in this kind of comparison, from small regions of individual genes, to whole genome alignments.  相似文献   

17.

Background  

The formylpeptide receptor family members FPR and FPRL1, expressed in myeloid phagocytes, belong to the G-protein coupled seven transmembrane receptor family (GPCRs). They share a high degree of sequence similarity, particularly in the cytoplasmic domains involved in intracellular signaling. The established model of cell activation through GPCRs states that the receptors isomerize from an inactive to an active state upon ligand binding, and this receptor transformation subsequently activates the signal transducing G-protein. Accordingly, the activation of human neutrophil FPR and FPRL1 induces identical, pertussis toxin-sensitive functional responses and a transient increase in intracellular calcium is followed by a secretory response leading to mobilization of receptors from intracellular stores, as well as a release of reactive oxygen metabolites.  相似文献   

18.
G protein-coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human-chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chicken's ability and mode of detecting both bitter and sweet taste may differ from the human's. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download.  相似文献   

19.

Background  

The melanocortin (MC) receptors have a key role in regulating body weight and pigmentation. They belong to the rhodopsin family of G protein-coupled receptors (GPCRs). The purpose of this study was to identify ancestral MC receptors in agnathan, river lamprey.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号