首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
  • 1.1. The length of the poly(A) tail at the 3'-end of mRNA may control protein synthesis by bringing the 3'-end in close proximity to the 5'-end of the noncoding region as well as increasing the duration of mRNA translation by its binding to the poly(A) binding protein.
  • 2.2. The rate-limiting step in the decay of the body of the message is the shortening of a long poly(A) tail during mRNA translation. The shortening of the poly(A) tail occurs during pre-elongation in the protein synthesis cycle.
  • 3.3. The shortening of the poly(A) tail during mRNA translation may not involve RNase activity, however poly(A) binding protein seems to play a role, at least in part, in shortening of the poly(A) tail.
  相似文献   

10.
11.

Background  

Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development.  相似文献   

12.
13.

Background

The spatiotemporal expression patterns of microRNAs (miRNAs) are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T)-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively.

Results

We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A)-stem-loop RT primer and then used as templates for SYBR® Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U) tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run.

Conclusions

The cost-effective RT-qPCR of miRNAs with poly(A)-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号