共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudo-nitzschia is a marine cosmopolitan genus of chain-forming planktonic diatoms. As for the vast majority of phytoplankton organisms, species identification within this genus mostly relies upon morphological features. Taxa were initially identified based on cell shape and gross morphology of their composite silica cell wall, called the frustule. Yet, observations of the frustule in electron microscopy showed many additional characters for species identification and results of molecular studies have demonstrated that genetically distinct groups might exist within morpho-species. However, these studies have not addressed the biological meaning of these genetic differences. Here, we bridge that gap by comparing ultrastructural features and sequence data (three ribosomal and one plastid marker) of 95 strains with results of mating experiments among these strains. Experiments were performed on two morphologically distinct entities: P. delicatissima and P. pseudodelicatissima. Each of the two entities consisted of multiple genetically distinct and reproductively isolated taxa, all occurring in sympatry: P. delicatissima was composed of three phylogenetic and reproductively distinct groups, whereas P. pseudodelicatissima consisted of up to five. Once these taxa had been defined both genetically and biologically, subtle ultrastructural differences could be detected as well. Our findings not only show that cryptic genetic variants abound in sympatry, but also that they are reproductively isolated and, therefore, biologically distinct units. 相似文献
2.
Thomas JH 《Genetics》2006,172(4):2269-2281
Among a large number of homologous gene clusters in C. elegans, two gene families that appear to undergo concerted evolution were studied in detail. Both gene families are nematode specific and encode small secreted proteins of unknown function. For both families in three Caenorhabditis species, concerted groups of genes are characterized by close genomic proximity and by genes in inverted orientation. The rate of protein evolution in one of the two families could be calibrated by comparison with a closely related nonconcerted singleton gene with one-to-one orthologs in all three species. This comparison suggests that protein evolution in concerted gene clusters is two- to sevenfold accelerated. A broader survey of clustered gene families, focused on adjacent inverted gene pairs, identified an additional seven families in which concerted evolution probably occurs. All nine identified families encode relatively small proteins, eight of them encode putative secreted proteins, and most of these have very unusual amino acid composition or sequence. I speculate that these genes encode rapidly evolving antimicrobial peptides. 相似文献
3.
Mitogenomics reveals two cryptic species in Ciona intestinalis 总被引:1,自引:0,他引:1
Individual mitochondrial genes or genomic features are commonly used as phylogenetic markers at many taxonomic levels. We used a mitogenomics approach to demonstrate the existence of two cryptic species in the ascidian Ciona intestinalis, a model chordate whose status as a single species has recently been questioned. Comprehensive comparative analysis of the mitochondrial genome of the two cryptic species revealed significant differences in gene order, size and number of noncoding regions, compositional features and divergence of protein-coding genes. 相似文献
4.
Small eukaryotic species (<1 mm) are thought to behave as prokaryotes in that, lacking geographical barriers to their dispersal due to their tiny size, they are ubiquitous. Accordingly, the absence of geographical insulation would imply the existence of a relatively small number of microeukaryotic species. To test these ideas, we sequenced and compared several nuclear, mitochondrial, and chloroplast genes from the isolates of a marine picoeukaryotic alga (approximately 2 microm), Micromonas pusilla, collected worldwide. Independent and combined phylogenetic analyses demonstrate that this traditional single morphospecies actually comprises several independent lineages, some of which are shown to be ubiquitous in oceans. However, while some lineages group closely related strains, others form distant clusters, revealing the existence of cryptic species. Moreover, molecular dating using a relaxed clock suggests that their first diversification may have started as early as during the Late Cretaceous (approximately 65 MYA), implying that "M. pusilla" is the oldest group of cryptic species known to date. Our results illustrate that global dispersal of a picoeukaryote is possible in oceans, but this does not imply a reduced species number. On the contrary, we show that the morphospecies concept is untenable because it overlooks a large genetic and species diversity and may lead to incorrect biological assumptions. 相似文献
5.
Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in 15N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in 15N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes. 相似文献
6.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates. 相似文献
7.
The presence of morphologically similar but genetically distinct species has impacted biogeographical and ecological paradigms. In marine sediments, free‐living nematodes form one of the most abundant and diverse faunal groups. Inferring the importance of nematode diversity for ecosystem functioning requires species‐level identification, which is hampered by the lack of easily observable diagnostic characters and the presence of cryptic species. New techniques are urgently needed to adequately study the ecology and evolution of cryptic species. The aim of the present study was to evaluate the potential of a quantitative real‐time PCR (qPCR) assay using the internal transcribed spacer (ITS) region of the ribosomal DNA to detect and quantify cryptic species of the R. (P.) marina complex. All primer pairs proved to be highly specific, and each primer pair was able to detect a single juvenile in a pool of 100 nematodes. Ct values were significantly different between developmental stages for all species except for PmIII. Despite differences between developmental stages, a strong correlation was observed between the amount of extracted DNA and the number of nematodes present. Relative and absolute quantification estimates were comparable and resulted in strong positive correlations between the qPCR estimate and the actual number of nematodes present in the samples. The qPCR assay developed here provides the ability to quickly identify and quantify cryptic nematode species and will facilitate their study in laboratory and field settings. 相似文献
8.
Development and evolution of chordate cartilage 总被引:3,自引:0,他引:3
Rychel AL Swalla BJ 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2007,308(3):325-335
Deuterostomes are a monophyletic group of animals containing vertebrates, lancelets, tunicates, hemichordates, echinoderms, and xenoturbellids. Four out of these six extant groups-vertebrates, lancelets, tunicates, and hemichordates-have pharyngeal gill slits. All groups of deuterostome animals that have pharyngeal gill slits also have a pharyngeal skeleton supporting the pharyngeal openings, except tunicates. We previously found that pharyngeal cartilage in hemichordates and cephalochordates contains a fibrillar collagen protein similar to vertebrate type II collagen, but unlike vertebrate cartilage, the invertebrate deuterostome cartilages are acellular. We found SoxE and fibrillar collagen expression in the pharyngeal endodermal cells adjacent to where the cartilages form. These same endodermal epithelial cells also express Pax1/9, a marker of pharyngeal endoderm in vertebrates, lancelets, tunicates, and hemichordates. In situ experiments with a cephalochordate fibrillar collagen also showed expression in pharyngeal endoderm, as well as the ectoderm and the mesodermal coelomic pouches lining the gill bars. These results indicate that the pharyngeal endodermal cells are responsible for secretion of the cartilage in hemichordates, whereas in lancelets, all the pharyngeal cells surrounding the gill bars, ectodermal, endodermal, and mesodermal may be responsible for cartilage formation. We propose that endoderm secretion was primarily the ancestral mode of making pharyngeal cartilages in deuterostomes. Later the evolutionary origin of neural crest allowed co-option of the gene network for the secretion of pharyngeal cartilage matrix in the new migratory neural crest cell populations found in vertebrates. 相似文献
9.
Reproductive protein evolution within and between species: maintenance of divergent ZP3 alleles in Peromyscus 总被引:1,自引:0,他引:1
In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than nonreproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is an egg coat protein involved in primary binding of egg and sperm and is essential for fertilization. We find that amino acid polymorphism in the sperm-combining region of ZP3 is high relative to silent polymorphism in both species of Peromyscus . In addition, while there is geographical structure at a mitochondrial gene ( Cytb ), a nuclear gene ( Lcat ) and eight microsatellite loci, we find no evidence for geographical structure at Zp3 in Peromyscus truei . These patterns are consistent with the maintenance of ZP3 alleles by balancing selection, possibly due to sexual conflict or pathogen resistance. However, we do not find evidence that reinforcement promotes ZP3 diversification; allelic variation in P. truei is similar among populations, including populations allopatric and sympatric with sibling species. In fact, most alleles are present in all populations sampled across P. truei's range. While additional data are needed to identify the precise evolutionary forces responsible for sequence variation in ZP3, our results suggest that in Peromyscus , selection to maintain divergent alleles within species contributes to the pattern of rapid amino acid substitution observed among species. 相似文献
10.
A large portion of the surface‐ocean biomass is represented by microscopic unicellular plankton. These organisms are functionally and morphologically diverse, but it remains unclear how their diversity is generated. Species of marine microplankton are widely distributed because of passive transport and lack of barriers in the ocean. How does speciation occur in a system with a seemingly unlimited dispersal potential? Recent studies using planktonic foraminifera as a model showed that even among the cryptic genetic diversity within morphological species, many genetic types are cosmopolitan, lending limited support for speciation by geographical isolation. Here we show that the current two‐dimensional view on the biogeography and potential speciation mechanisms in the microplankton may be misleading. By depth‐stratified sampling, we present evidence that sibling genetic types in a cosmopolitan species of marine microplankton, the planktonic foraminifer Hastigerina pelagica, are consistently separated by depth throughout their global range. Such strong separation between genetically closely related and morphologically inseparable genetic types indicates that niche partitioning in marine heterotrophic microplankton can be maintained in the vertical dimension on a global scale. These observations indicate that speciation along depth (depth‐parapatric speciation) can occur in vertically structured microplankton populations, facilitating diversification without the need for spatial isolation. 相似文献
11.
Abstract The polymerase chain reaction (PCR) and DNA sequencing are being used for the study of the origin and evolution of New Zealand plants and animals. Here we describe methods for rapidly obtaining DNA sequences from small amounts of fresh and preserved tissue, and apply them to the problem ofresolving relationships among skinks of the Austrnlasian genus Leiolopisma. DNA extracted from frozen tail muscle was used for the main part of the study. Part ofthe mitochondrial12S ribosomal RNA gene was isolated using PCR. Direct sequencing of this 400 nucleotide region supports the separation of “L. nigriplantare” into several genetically distinct but morphologically similar species. The sequence data have also identified a potential case of hybridisation between two sympatric species in Otago, L. nigriplantare polychroma and L. maccanni. The data set supports the view that skinks have been in New Zealand very much longer than five million years. From these results we expect that application of the PCR and other techniques in molecular biology will help solve many questions about the origins and evolution of New Zealand's biota, as well as help identify unique populations for conservation. 相似文献
12.
13.
In South Australia the two tick species Amblyomma limbatum and Aponomma hydrosauri share the same common reptile host species, but have allopatric distributions which abut along a narrow parapatric boundary. Reproductive interference is a mechanism that has previously been suggested could contribute to maintaining the boundary. Populations of each species were established in pens within the range of Aponomma hydrosauri. Pens held either each species alone, or the two species together. The performance of females in those pens was monitored over 28 months. There was no indication that the proportion of attached females which mated and engorged was reduced by the presence of heterospecifics. There was no indication that the time taken to mate, engorge and detach was any longer in the presence of heterospecifics. The experiment did not support the hypothesis that reproductive interference contributes to maintaining the parapatric boundary. However, Amblyomma limbatum in the pens had a shorter season of reproductive activity, and achieved much smaller numbers of reproductive females. This may inhibit successful colonization of cooler habitats to the south of its distribution. 相似文献
14.
Ultrastructure of two species of oil-degrading marine bacteria 总被引:1,自引:0,他引:1
15.
ABSTRACT. 1. Egg sizes and clutch sizes of the grasshoppers Chorthippus brunneus (Thunb.) and Myrmeleotettix maculatus (Thunb.) were compared among three years and among three sites less than 1.3 km apart. Relationships between these reproductive traits and date of egg laying, body size and body condition were sought.
2. M.maculatus , the smaller species, laid fewer but larger eggs; and only the eggs of this species showed significant differences between sites and years.
3. A negative correlation between egg size and number per clutch was evident between species and years, but generally not among sites and among individuals of a population.
4. However, a hidden negative correlation between egg size and number was uncovered within populations when the relationship was examined for females of a given mature weight.
5. Variation in the number of eggs per clutch was explained statistically by a positive relationship between female body weight and egg number. Also, both interpopulation and intrapopulation comparisons revealed that for M.maculatus , but not for C.brunneus , females with long hind femurs laid large eggs. 相似文献
2. M.maculatus , the smaller species, laid fewer but larger eggs; and only the eggs of this species showed significant differences between sites and years.
3. A negative correlation between egg size and number per clutch was evident between species and years, but generally not among sites and among individuals of a population.
4. However, a hidden negative correlation between egg size and number was uncovered within populations when the relationship was examined for females of a given mature weight.
5. Variation in the number of eggs per clutch was explained statistically by a positive relationship between female body weight and egg number. Also, both interpopulation and intrapopulation comparisons revealed that for M.maculatus , but not for C.brunneus , females with long hind femurs laid large eggs. 相似文献
16.
A study of a number of reproductive traits in two sympatric species of Pedicularis in northern Swedish Lapland, the subarctic-alpine P lapponica and the artic P hursuta , revealed that the life-history strategies of the two species differ profoundly High fruit set and low seed abortion rate, as m P hursuta , is common in arctic plants in late-thawing habitats and represents a case of extreme adversity selection rather than an indication of a ruderal life-history strategy Pedicularis lapponica , on the other hand, is a typical K-strategist (or stress-tolerator) requiring a longer period of growth for optimal reproduction Occuring at both low and high altitudes in the area, P lapponica tends to increase in self-compatibility with altitude, which is interpreted as an adaptation to lower pollinator visitation frequency in arctic environments The variation in length of the protruding part of the style in P lapponica is shown to be correlated with exposure to light Predispersal seed predation is severe m P lapponica at low altitudes, where the capsules are attacked by fly and moth larvae At high altitudes, a minor proportion of the capsules of P lapponica experience predation and only from flies, while P hursuta is completely unpredated 相似文献
17.
Competition experiments betweenPhaeodactylum tricornutum andSkeletonema costatum showed that even at temperatures higher than 10°C (i.c. 14°C), the development ofSkeletonema can be favoured by adjusting nutrient levels and nutrient ratios. Low NSi ratios were found to favourSkeletonema. Additionally, high NP ratios further enhanced the ability ofSkeletonema to dominate the cuftures. Contrary to some statements in literature, it seems that high concentrations of silicates are more important for the dominance ofSkeletonema costatum in large-scale cultures than just low temperatures. This finding is important with regard to stimulating the blooming ofSkeletonema costatum in natural phytoplankton populations as food for bivalve molluscs. 相似文献
18.
The functional effects of most amino acid replacements accumulated during molecular evolution are unknown, because most are not observed naturally and the possible combinations are too numerous. We created 168 single mutations in wild-type Escherichia coli isopropymalate dehydrogenase (IMDH) that match the differences found in wild-type Pseudomonas aeruginosa IMDH. 104 mutant enzymes performed similarly to E. coli wild-type IMDH, one was functionally enhanced, and 63 were functionally compromised. The transition from E. coli IMDH, or an ancestral form, to the functional wild-type P. aeruginosa IMDH requires extensive epistasis to ameliorate the combined effects of the deleterious mutations. This result stands in marked contrast with a basic assumption of molecular phylogenetics, that sites in sequences evolve independently of each other. Residues that affect function are scattered haphazardly throughout the IMDH structure. We screened for compensatory mutations at three sites, all of which lie near the active site and all of which are among the least active mutants. No compensatory mutations were found at two sites indicating that a single site may engage in compound epistatic interactions. One complete and three partial compensatory mutations of the third site are remote and lie in a different domain. This demonstrates that epistatic interactions can occur between distant (>20Å) sites. Phylogenetic analysis shows that incompatible mutations were fixed in different lineages. 相似文献
19.
Among the higher fungi, reproductively isolated cryptic species exist that are morphologically difficult to distinguish owing to a lack of taxonomically useful morphological characters. Mating tests are helpful for detecting reproductive isolation between cryptic species, but are often difficult to perform for higher fungi, especially ectomycorrhizal fungi. In order to identify cryptic species of the ectomycorrhizal genus Strobilomyces more efficiently, lineages were defined based on the nucleotide sequence of two mitochondrial genes. Then the gene flow among lineages was measured using cleaved amplified polymorphic sequences (CAPS) markers designed for single copy nuclear genes. No heterozygosity was observed between different lineages, but within the same lineage heterozygosity was present at the ratio expected given Hardy Weinberg equilibrium. These results show that the mtDNA lineages are separate Mendelian populations, possibly cryptic species that are reproductively isolated from each other. 相似文献
20.
? Premise of the study: Divergent edaphic adaptation can contribute to reproductive isolation and coexistence between closely related species, yet we know little about how small-scale continuous edaphic gradients contribute to this phenomenon. We investigated edaphic adaptation between two cryptic species of California wildflower, Lasthenia californica and L. gracilis (Asteraceae), which grow in close parapatry on serpentine soil. ? Methods: We reciprocally transplanted both species into the center of each species' habitat and the transition zone between species. We quantified multiple components of fitness and used aster models to predict fitness based on environmental variables. We sampled soil across the ridge throughout the growing season to document edaphic changes through time. We sampled naturally germinating seedlings to determine whether there was dispersal into the adjacent habitat and to help pinpoint the timing of any selection against migrants. ? Key results: We documented within-serpentine adaptation contributing to habitat isolation between close relatives. Both species were adapted to the edaphic conditions in their native region and suffered fitness trade-offs when moved outside that region. However, observed fitness values did not perfectly match those predicted by edaphic variables alone, indicating that other factors, such as competition, also contributed to plant fitness. Soil water content and concentrations of calcium, magnesium, sodium, and potassium were likely drivers of differential fitness. Plants either had limited dispersal ability or migrants experienced early-season mortality outside their native region. ? Conclusions: Demonstrating that continuous habitats can support differently adapted, yet closely related, taxa is important to a broader understanding of how species are generated and maintained in nature. 相似文献