首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The ATP-binding-cassette (ABC) transporter associated with antigen processing (TAP) delivers peptides into the ER. TAP consists of two polypeptides (TAP1 and TAP2) each with an N-terminal transmembrane (TMD) and a C-terminal nucleotide binding domain (NBD). The two highly homologous NBDs of TAP show different nucleotide binding specificites, and identical mutations in the domains can have different effects on peptide transport. We asked whether this functional asymmetry of the NBDs is an intrinsic property or is imposed by the TMDs to which they are linked. To investigate the functional interdependence of the TAP domains, we created various TAP variants in which TMDs and/or NBDs were exchanged. All TAP variants except those with two TMDs of TAP1 could assemble. The TMDs did not affect the different nucleotide binding properties of the NBDs. The TAP variant with switched NBDs showed active peptide transport while the variants with pairs of identical NBDs or TMDs were inactive. Although both types of TMDs and NBDs have to be present for peptide transport they do not have to be assorted as in wild-type TAP. Thus, TAP domains seem to preserve functional autonomy despite their fusion into single polypeptide chains. We propose that the two NBDs act as nonequivalent 'modules' that directly determine the functional asymmetry of the included ATP-binding-cassettes. This provides a new insight into the function of NBDs and opens up new possibilities to investigate the molecular mechanism of the 'NBD engine' in ABC transporters.  相似文献   

2.
Procko E  Gaudet R 《Biochemistry》2008,47(21):5699-5708
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.  相似文献   

3.
Powering the peptide pump: TAP crosstalk with energetic nucleotides   总被引:3,自引:0,他引:3  
ATP-binding cassette (ABC) transporters represent a large family of membrane-spanning proteins that have a shared structural organization and conserved nucleotide-binding domains (NBDs). They transport a large variety of solutes, and defects in these transporters are an important cause of human disease. TAP (tmacr;ransporter associated with āntigen pmacr;rocessing) is a heterodimeric ABC transporter that uses nucleotides to drive peptide transport from the cytoplasm into the endoplasmic reticulum lumen, where the peptides then bind major histocompatibility complex (MHC) class I molecules. TAP plays an essential role in the MHC class I antigen presentation pathway. Recent studies show that the two NBDs of TAP fulfil distinct functions in the catalytic cycle of this transporter. In this opinion article, a model of alternating ATP binding and hydrolysis is proposed, in which nucleotide interaction with TAP2 primarily controls substrate binding and release, whereas interaction with TAP1 controls structural rearrangements of the transmembrane pathway. Viral proteins that inhibit TAP function cause arrests at distinct points of this catalytic cycle.  相似文献   

4.
囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道   总被引:1,自引:1,他引:0  
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

5.
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.  相似文献   

6.
Buchaklian AH  Klug CS 《Biochemistry》2006,45(41):12539-12546
ATP-binding cassette (ABC) transporters make up one of the largest superfamilies of proteins known and have been shown to transport substrates ranging from lipids and antibiotics to sugars and amino acids. The dysfunction of ABC transporters has been linked to human pathologies such as cystic fibrosis, hyperinsulinemia, and macular dystrophy. Several bacterial ABC transporters are also necessary for bacterial survival and transport of virulence factors in an infected host. MsbA is a 65 kDa protein that forms a functional homodimer consisting of two six-helix transmembrane domains and two approximately 250 amino acid nucleotide-binding domains (NBD). The NBDs contain several conserved regions such as the Walker A, LSGGQ, and H motif that bind directly to ATP and align it for hydrolysis. MsbA transports lipid A, its native substrate, across the inner membrane of Gram-negative bacteria. The loss or dysfunction of MsbA results in a toxic accumulation of lipid A inside the cell, leading to cell-membrane instability and cell death. Using site-directed spin labeling electron paramagnetic resonance spectroscopy, conserved motifs within the MsbA NBD have been evaluated for structure and dynamics upon substrate binding. It has been determined that the LSGGQ NBD consensus sequence is consistent with an alpha-helical conformation and that these residues maintain extensive tertiary contacts throughout hydrolysis. The dynamics of the LSGGQ and the H-motif region have been studied in the presence of ATP, ADP, and ATP plus vanadate to identify the residues that are directly affected by interactions with the substrate before, after, and during hydrolysis, respectively.  相似文献   

7.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1), a member of the ATP-binding cassette (ABC) family of transport proteins, actively transports many cytotoxic compounds out of the cell. ABC transporters have two nucleotide-binding domains (NBD) and two transmembrane domains. The presence of the conserved "signature" sequence (LSGGQ) in each NBD is a unique feature in these transporters. The function of the signature sequences is unknown. In this study, we tested whether the signature sequences ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) in P-gp are in close proximity to the opposing Walker A consensus nucleotide-binding sequences ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1). Pairs of cysteines were introduced into a Cys-less P-gp at the signature and "Walker A" sites and the mutant P-gps were subjected to oxidative cross-linking. At 4 degrees C, when thermal motion is low, P-gp mutants (L531C(Signature)/C1074(Walker A) and C431(Walker A)/L1176C(Signature) were cross-linked. Cross-linking inhibited the drug-stimulated ATPase activities of these two mutants. Their activities were restored, however, after addition of the reducing agent, dithiothreitol. Vanadate trapping of nucleotide at the ATP-binding sites prevented cross-linking of the mutants. These results indicate that the signature sequences are adjacent to the opposing Walker A site. They likely participate in forming the ATP-binding sites and are displaced upon ATP hydrolysis. The resulting conformational change may be the signal responsible for coupling ATP hydrolysis to drug transport by inducing conformational changes in the transmembrane segments.  相似文献   

8.
Jones PM  George AM 《Proteins》2009,75(2):387-396
ABC transporters are ubiquitous, ATP-dependent transmembrane pumps. The mechanism by which ATP hydrolysis in the nucleotide-binding domain (NBD) effects conformational changes in the transmembrane domain that lead to allocrite translocation remains largely unknown. A possible aspect of this mechanism was suggested by previous molecular dynamics simulations of the MJ0796 NBD dimer, which revealed a novel, nucleotide-dependent intrasubunit conformational change involving the relative rotation of the helical and catalytic subdomains. Here, we find that in four of five simulations of the ADP/ATP-bound dimer, the relative rotation of the helical and catalytic subdomains in the ADP-bound monomer results in opening of the ADP-bound active site, probably sufficient or close to sufficient to allow nucleotide exchange. We also observe that in all five simulations of the ADP/ATP-bound dimer, the intimate contact of the LSGGQ signature sequence with the ATP gamma-phosphate is weakened by the intrasubunit conformational change within the ADP-bound monomer. We discuss how these results support a constant contact model for the function of the NBD dimer in contrast to switch models, in which the NBDs are proposed to fully disassociate during the catalytic cycle.  相似文献   

9.
The yeast a-factor transporter Ste6 is a member of the ABC transporter family and is closely related to human MDR1. We constructed a set of 26 Ste6 mutants using a random mutagenesis approach. Cell fractionation experiments demonstrated that most of the mutants, with the notable exception of those with alterations in TM1, are transported to the plasma membrane, the presumptive site of action of Ste6. Trafficking, therefore, does not seem to be affected in most of the mutants. To identify regions in Ste6 that interact with the ABC transporter "signature motif" (LSGGQ) we screened for intragenic revertants of the LSGGQ mutant M68 (S507N). Suppressor mutations were identified in TM12 and upstream of TM6. Surprisingly, these mutations also suppressed the Walker A mutation G397D, which should be defective in ATP-binding and hydrolysis at NBD1. Photoaffinity labeling experiments with 8-azido-[alpha-32P]ATP showed that ATP binding at NBD2 is reduced by the suppressor mutation in TM12. The experiments further suggest that the two NBDs of Ste6 are not equivalent and affect each other's ability to bind and hydrolyze ATP.  相似文献   

10.
BACKGROUND: The transporter associated with antigen processing (TAP) consists of two polypeptides, TAP1 and TAP2. TAP delivers peptides into the ER and forms a "loading complex" with MHC class I molecules and accessory proteins. Our previous experiments indicated that nucleotide binding to TAP plays a critical role in the uptake of peptide and the release of assembled class I molecules. To investigate whether the conserved nucleotide binding domains (NBDs) of TAP1 and TAP2 are functionally equivalent, we created TAP variants in which only one of the two ATP binding sites was mutated. RESULTS: Mutations in the NBDs had no apparent effect on the formation of the loading complex. However, both NBDs had to be functional for peptide uptake and transport. TAP1 binds ATP much more efficiently than does TAP2, while the binding of ADP by the two chains is essentially equivalent. Peptide-mediated release of MHC class I molecules from TAP was blocked only when the NBD of TAP1 was disrupted. A different NBD mutation that does not affect nucleotide binding has strikingly different effects on peptide transport activity depending on whether it is present in TAP1 or TAP2. CONCLUSIONS: Our findings indicate that ATP binding to TAP1 is the initial step in energizing the transport process and support the view that ATP hydrolysis at one TAP chain induces ATP binding at the other chain; this leads to an alternating and interdependent catalysis of both NBDs. Furthermore, our data suggest that the peptide-mediated undocking of MHC class I is linked to the transport cycle of TAP by conformational signals arising predominantly from TAP1.  相似文献   

11.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431)(NBD1)/C1176C(NBD2) and Cys(1074)(NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431)(NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between Cys(1074)(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.  相似文献   

12.
The ABC transporter Mdl1p, a structural and functional homologue of the transporter associated with antigen processing (TAP) plays an important role in intracellular peptide transport from the mitochondrial matrix of Saccharomyces cerevisiae. To characterize the ATP hydrolysis cycle of Mdl1p, the nucleotide-binding domain (NBD) was overexpressed in Escherichia coli and purified to homogeneity. The isolated NBD was active in ATP binding and hydrolysis with a turnover of 25 ATP per minute and a Km of 0.6 mm and did not show cooperativity in ATPase activity. However, the ATPase activity was non-linearly dependent on protein concentration (Hill coefficient of 1.7), indicating that the functional state is a dimer. Dimeric catalytic transition states could be trapped either by incubation with orthovanadate or beryllium fluoride, or by mutagenesis of the NBD. The nucleotide composition of trapped intermediate states was determined using [alpha-32P]ATP and [gamma-32P]ATP. Three different dimeric intermediate states were isolated, containing either two ATPs, one ATP and one ADP, or two ADPs. Based on these experiments, it was shown that: (i) ATP binding to two NBDs induces dimerization, (ii) in all isolated dimeric states, two nucleotides are present, (iii) phosphate can dissociate from the dimer, (iv) both nucleotides are hydrolyzed, and (v) hydrolysis occurs in a sequential mode. Based on these data, we propose a processive-clamp model for the catalytic cycle in which association and dissociation of the NBDs depends on the status of bound nucleotides.  相似文献   

13.
Mating between the two haploid cell types (a and alpha) of the yeast Saccharomyces cerevisiae depends upon the efficient secretion and delivery of the a- and alpha-factor pheromones to their respective target cells. However, a quantitative correlation between the level of transported a-factor and mating efficiency has never been determined. a-Factor is transported by Ste6p, a member of the ATP-binding cassette (ABC) family of transporter proteins. In this study, several missense mutations were introduced in or near the conserved LSGGQ motif within the first nucleotide-binding domain of Ste6p. Quantitation of extracellular a-factor levels indicated that these mutations caused a broad range of a-factor transport defects, and those directly within the LSGGQ motif caused the most severe defects. Overall, we observed a strong correlation between the level of transported a-factor and the mating efficiency of these strains, consistent with the role of Ste6p as the a-factor transporter. The LSGGQ mutations did not cause either a significant alteration in the steady-state level of Ste6p or a detectable change in its subcellular localization. Thus, it appears that these mutations interfere with the ability of Ste6p to transport a-factor out of the MATa cell. The possible involvement of the LSGGQ motif in transporter function is consistent with the strong conservation of this sequence motif throughout the ABC transporter superfamily.  相似文献   

14.
The transporters associated with antigen processing (TAP) belong to the family of ATP-binding cassette (ABC) transporters which share structural organization and use energy provided by ATP to translocate a large variety of solutes across cellular membranes. TAP is thought to hydrolyze ATP in order to deliver peptides to the endoplasmic reticulum where they can assemble with major histocompatibility complex class I molecules. However, initial binding of peptide substrates to TAP has been suggested to be ATP-independent. In this study, the effect of temperature, energetic nucleotides, and peptide on conformation and functional capacity of TAP proteins was examined. Incubation of insect cell microsomes overexpressing human TAP complexes or of human B cell microsomes at 37 degrees C induced a rapid and irreversible structural change that reduced dramatically TAP reactivity with antibodies to transmembrane and nucleotide-binding domains and abolished peptide binding and transport by TAP. These alterations were inhibited almost completely by di- or trinucleotides, and partially by high affinity peptides, suggesting that complete nucleotide dissociation inactivates TAP complexes. Experiments with isolated TAP subunits and fragments suggested that TAP complex stabilization by nucleotides may depend on their binding to the TAP1 subunit. Thus, the cellular level of functional TAP complexes may be regulated by nucleotide concentrations. It is speculated that this regulation may serve to prevent induction of autoimmunity by stressed cells with low energy levels.  相似文献   

15.
The ATP-binding cassette half-transporters ABCG5 (G5) and ABCG8 (G8) promote secretion of neutral sterols into bile, a major pathway for elimination of sterols. Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a recessive disorder characterized by impaired biliary and intestinal sterol secretion, sterol accumulation, and premature atherosclerosis. The mechanism by which the G5G8 heterodimer couples ATP hydrolysis to sterol transport is not known. Here we examined the roles of the Walker A, Walker B, and signature motifs in the nucleotide-binding domains (NBD) of G5 and G8 using recombinant adenoviruses to reconstitute biliary sterol transport in G5G8-deficient mice. Mutant forms of each half-transporter were co-expressed with their wild-type partners. Mutations at crucial residues in the Walker A and Walker B domains of G5 prevented biliary sterol secretion, whereas mutations of the corresponding residues in G8 did not. The opposite result was obtained when mutations were introduced into the signature motif; mutations in the signature domain of G8 prevented sterol transport, but substitution of the corresponding residues in G5 did not. Taken together, these findings indicate that the NBDs of G5 and G8 are not functionally equivalent. The integrity of the canonical NBD formed by the Walker A and Walker B motifs of G5 and the signature motif of G8 is essential for G5G8-mediated sterol transport. In contrast, mutations in key residues of the NBD formed by the Walker A and B motifs of G8 and the signature sequence of G5 did not affect sterol secretion.  相似文献   

16.
In Bacteria and Archaea, high-affinity potassium uptake is mediated by the ATP-driven KdpFABC complex. On the basis of the biochemical properties of the ATP-hydrolyzing subunit KdpB, the transport complex is classified as type IA P-type ATPase. However, the KdpA subunit, which promotes K(+) transport, clearly resembles a potassium channel, such that the KdpFABC complex represents a chimera of ion pumps and ion channels. In the present study, we demonstrate that the blending of these two groups of transporters in KdpFABC also entails a nucleotide-binding mechanism in which the KdpC subunit acts as a catalytic chaperone. This mechanism is found neither in P-type ATPases nor in ion channels, although parallels are found in ABC transporters. In the latter, the ATP nucleotide is coordinated by the LSGGQ signature motif via double hydrogen bonds at a conserved glutamine residue, which is also present in KdpC. High-affinity nucleotide binding to the KdpFABC complex was dependent on the presence of this conserved glutamine residue in KdpC. In addition, both ATP binding to KdpC and ATP hydrolysis activity of KdpFABC were sensitive to the accessibility, presence or absence of the hydroxyl groups at the ribose moiety of the nucleotide. Furthermore, the KdpC subunit was shown to interact with the nucleotide-binding loop of KdpB in an ATP-dependent manner around the ATP-binding pocket, thereby increasing the ATP-binding affinity by the formation of a transient KdpB/KdpC/ATP ternary complex.  相似文献   

17.
The most common cause of cystic fibrosis is misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR) protein because of deletion of residue Phe-508 (DeltaF508). P-glycoprotein (P-gp) is an ideal model protein for studying how mutations disrupt folding of ATP-binding cassette proteins such as CFTR because specific chemical chaperones can be used to correct folding defects. Interactions between the nucleotide binding domains (NBDs) are critical because ATP binds at the interface between the NBDs. Here, we used disulfide cross-linking between cysteines in the Walker A sites and the LSGGQ signature sequences to test whether processing mutations located throughout P-gp disrupted interactions between the NBDs. We found that mutations present in the cytoplasmic loops, transmembrane segments, and linker regions or deletion of Tyr-490 (equivalent to Phe-508 in CFTR) inhibited cross-linking between the NBDs. Deletion of Phe-508 in the P-gp/CFTR chimera also inhibited cross-linking between the NBDs. Cross-linking was restored, however, when the mutants were expressed in the presence of the chemical chaperone cyclosporin A. The "rescued" mutants exhibited drug-stimulated ATPase activity, and cross-linking between the NBDs was inhibited by vanadate trapping of nucleotide. These results together with our previous findings (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 27585-27588) indicate that processing mutations disrupt interactions among all four domains. It appears that cross-talk between the cytoplasmic and the transmembrane domains is required for establishment of proper domain-domain interactions that occur during folding of ATP-binding cassette protein transporters.  相似文献   

18.
The human transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen. The functional unit of TAP is a heterodimer composed of the TAP1 and TAP2 subunits, both of which are members of the ABC-transporter family. ABC-transporters are ATP-dependent pumps, channels, or receptors that are composed of four modules: two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Although the TMDs are rather divergent in sequence, the NBDs are conserved with respect to structure and function. Interestingly, the NBD of TAP1 contains mutations at amino acid positions that have been proposed to be essential for catalytic activity. Instead of a glutamate, proposed to act as a general base, TAP1 contains an aspartate and a glutamine instead of the conserved histidine, which has been suggested to act as the linchpin. We used this degeneration to evaluate the individual contribution of these two amino acids to the ATPase activity of the engineered TAP1-NBD mutants. Based on our results a catalytic hierarchy of these two fundamental amino acids in ATP hydrolysis of the mutated TAP1 motor domain was deduced.  相似文献   

19.
Gaudet R  Wiley DC 《The EMBO journal》2001,20(17):4964-4972
The transporter associated with antigen processing (TAP) is an ABC transporter formed of two subunits, TAP1 and TAP2, each of which has an N-terminal membrane-spanning domain and a C-terminal ABC ATPase domain. We report the structure of the C-terminal ABC ATPase domain of TAP1 (cTAP1) bound to ADP. cTAP1 forms an L-shaped molecule with two domains, a RecA-like domain and a small alpha-helical domain. The diphosphate group of ADP interacts with the P-loop as expected. Residues thought to be involved in gamma-phosphate binding and hydrolysis show flexibility in the ADP-bound state as evidenced by their high B-factors. Comparisons of cTAP1 with other ABC ATPases from the ABC transporter family as well as ABC ATPases involved in DNA maintenance and repair reveal key regions and residues specific to each family. Three ATPase subfamilies are identified which have distinct adenosine recognition motifs, as well as distinct subdomains that may be specific to the different functions of each subfamily. Differences between TAP1 and TAP2 in the nucleotide-binding site may be related to the observed asymmetry during peptide transport.  相似文献   

20.
The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号