首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mevinolinic acid, the open acid form of mevinolin, which is a metabolite of Aspergillus terreus, has been shown to be a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Alberts et al., Proc. Natl. Acad. Sci. U.S.A. 77:3957-3961, 1980). The biosynthesis of mevinolinic acid was studied by examining the incorporation of [1-14C]acetate and [methyl-14C]methionine into the molecule. These isotopes were rapidly incorporated into mevinolinic acid, with [1-14C]acetate and [methyl-14C]methionine incorporation being linear for at least 10 and 30 min, respectively. A comparison of acetate incorporation into mevinolinic acid and fatty acids indicated that mevinolinic acid biosynthesis increased with a maximum between days 3 and 5 of growth; at this time cell growth had ceased and fatty acid biosynthesis was negligible. Hydrolysis of the mevinolinic acid and isolation of the products showed that [1-14C]acetate and [methyl-14C]methionine were incorporated into the 2-methylbutyric acid side chain as well as into the main (alcohol) portion of the molecule.  相似文献   

2.
The synthesis of 22-carbon fatty acids, with their first double bond at position 4, requires the participation of enzymes in both peroxisomes and the endoplasmic reticulum as well as the controlled movement of fatty acids between these two cellular compartments. It has been observed that there is generally an inverse relationship between rates of peroxisomal beta-oxidation vs those for the microsomal esterification of fatty acids into 1-acyl-sn-glycero-3-phosphocholine. With a variety of different substrates it was found that when a fatty acid is produced in peroxisomes, with its first double bond at position 4, its preferred metabolic fate is to move to microsomes for esterification rather than to serve as a substrate for continued degradation. The required movement, and the associated reactions, in peroxisomes and microsomes is not restricted to the synthesis of 4,7,10,13,16-docosapentaenoic acid and 4,7,10,13,16,19-docosahexaenoic acid. When microsomes and peroxisomes were incubated with NAD, NADPH and malonyl-CoA it was found that 6,9,12-octadecatrienoic acid was metabolized to linoleate. Collectively our findings suggest that there may be considerably more recycling of fatty acids between peroxisomes and the endoplasmic reticulum than was previously recognized.  相似文献   

3.
Metabolic engineering of fatty acid biosynthesis in plants.   总被引:27,自引:0,他引:27  
Fatty acids are the most abundant form of reduced carbon chains available from nature and have diverse uses ranging from food to industrial feedstocks. Plants represent a significant renewable source of fatty acids because many species accumulate them in the form of triacylglycerol as major storage components in seeds. With the advent of plant transformation technology, metabolic engineering of oilseed fatty acids has become possible and transgenic plant oils represent some of the first successes in design of modified plant products. Directed gene down-regulation strategies have enabled the specific tailoring of common fatty acids in several oilseed crops. In addition, transfer of novel fatty acid biosynthetic genes from noncommercial plants has allowed the production of novel oil compositions in oilseed crops. These and future endeavors aim to produce seeds higher in oil content as well as new oils that are more stable, are healthier for humans, and can serve as a renewable source of industrial commodities. Large-scale new industrial uses of engineered plant oils are on the horizon but will require a better understanding of factors that limit the accumulation of unusual fatty acid structures in seeds.  相似文献   

4.
Regulation of fatty acid biosynthesis in Escherichia coli.   总被引:25,自引:0,他引:25       下载免费PDF全文
Our understanding of fatty acid biosynthesis in Escherichia coli has increased greatly in recent years. Since the discovery that the intermediates of fatty acid biosynthesis are bound to the heat-stable protein cofactor termed acyl carrier protein, the fatty acid synthesis pathway of E. coli has been studied in some detail. Interestingly, many advances in the field have aided in the discovery of analogous systems in other organisms. In fact, E. coli has provided a paradigm of predictive value for the synthesis of fatty acids in bacteria and plants and the synthesis of bacterial polyketide antibiotics. In this review, we concentrate on four major areas of research. First, the reactions in fatty acid biosynthesis and the proteins catalyzing these reactions are discussed in detail. The genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway. Second, the function and role of the two essential cofactors in fatty acid synthesis, coenzyme A and acyl carrier protein, are addressed. Finally, the steps governing the spectrum of products produced in synthesis and alternative destinations, other than membrane phospholipids, for fatty acids in E. coli are described. Throughout the review, the contribution of each portion of the pathway to the global regulation of synthesis is examined. In no other organism is the bulk of knowledge regarding fatty acid metabolism so great; however, questions still remain to be answered. Pursuing such questions should reveal additional regulatory mechanisms of fatty acid synthesis and, hopefully, the role of fatty acid synthesis and other cellular processes in the global control of cellular growth.  相似文献   

5.
The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for the development of new antibacterial agents. The extended use of the antituberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for antibacterial development. Differences in subcellular organization of the bacterial and eukaryotic multienzyme fatty acid synthase systems offer the prospect of inhibitors with host versus target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalog of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes.  相似文献   

6.
β-Ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) catalyzes the first elongation step in straight-chain fatty acid (SCFA) biosynthesis in Escherichia coli. Overproduction of the corresponding KASIII gene, or the Brassica napus KASIII gene has previously been observed to lead to an increase in the amount of shorter-chain fatty acids produced by E. coli. In this study it is shown that overexpression of the KASIII gene, which initiates branched-chain fatty acid (BCFA) in Streptomyces glaucescens, does not lead to a change in the fatty acid profiles of E. coli. E. coli produces trace levels of BCFAs when grown in the presence of isobutyric acid, but the amounts of these are not significantly altered by expression of the S. glaucescens KASIII gene. In contrast, the amounts of BCFAs produced from isobutyryl CoA in vitro by E. coli cell-free extracts can be increased at least four-fold by the presence of the S. glaucescens KASIII. These observations suggest that in vivo production of isopalmitate by E. coli expressing the S. glaucescens KASIII is limited by availability of the appropriate BCFA biosynthetic primers. Journal of Industrial Microbiology & Biotechnology (2001) 27, 246–251. Received 10 January 2001/ Accepted in revised form 13 July 2001  相似文献   

7.
8.
9.
10.
During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds.  相似文献   

11.
Fatty acids are central hydrocarbon intermediates in the biosynthesis of diesel from renewable sources. We have engineered an Escherichia coli cell line that produces 4.5 g/L/day total fatty acid in a fed-batch fermentation. However, further enhancement of fatty acid biosynthesis in this cell line proved unpredictable. To develop a more reliable engineering strategy, a cell-free system was developed that enabled direct, quantitative investigation of fatty acid biosynthesis and its regulation in E. coli. Using this system, the strong dependence of fatty acid synthesis on malonyl-CoA availability and several important phenomena in fatty acid synthesis were verified. Results from this cell-free system were confirmed via the generation and analysis of metabolically engineered strains of E. coli. Our quantitative findings highlight the enormous catalytic potential of the E. coli fatty acid biosynthetic pathway, and target specific steps for protein and metabolic engineering to enhance the catalytic conversion of glucose into biodiesel.  相似文献   

12.
13.
When Mycobacterium convolutum R22 was grown on the n-alkanes C13 through C16, the predominant fatty acids were of the same chain length as the growth substrate. Cells grown on C13 through C16 n-alkanes incorporated between 15 and 85 pmol of acetate per microgram of lipid into the fatty acids, whereas acetate- or propane-grown cells incorporated 280 and 255 pmol of acetate per microgram of lipid, respectively. In vivo experiments demonstrated that hexadecane, hexadecanoic acid, and hexadecanoylcoenzyme A (CoA) all inhibited de novo fatty acid synthesis. Hexadecanoyl-CoA was the most potent inhibitor. Hexadecane and hexadecanoic acid inhibited acetyl-CoA carboxylase by up to 37 and 39%, respectively, at 1 mM. Hexadecanoyl-CoA inhibited the enzyme activity by 65% at 50 micrometer. Cells that were grown on C14 through C16 n-alkanes had about 25 times less acetyl-CoA carboxylase activity than did cells grown on acetate or propane, suggesting repressed levels of the enzyme. Hexadecane- or pentadecane-grown cells were found to have 5 to 10 times more intracellular free fatty acid than cells grown on acetate, propane, or ethane.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes—a promiscuous thioesterase and a ketoacyl synthase—can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号