首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pancreatic acinar cells, chaperonin Cpn60 is present in all the cellular compartments involved in protein secretion as well as in mitochondria. To better understand the role Cpn60 plays in pancreatic secretion, we have evaluated its changes under experimental conditions known to alter pancreatic secretion. Quantitative protein A-gold immunocytochemistry was used to reveal Cpn60 in pancreatic acinar cells. Cpn60 immunolabelings in cellular compartments involved in secretion were found to decrease in acute pancreatitis as well as upon stimulation of secretion and in starvation conditions. A major increase in Cpn60 was recorded in diabetic condition. This was normalized by insulin treatment. Although in certain situations changes in secretory enzymes and in Cpn60 correlate well, in others, nonparallel secretion seemed to take place. In contrast, expression of mitochondrial Cpn60 in acinar cells appeared to remain stable in all conditions except starvation, where its levels decreased. Expression of Cpn60 in the secretory pathway and in mitochondria thus appears to behave differently, and Cpn60 in the secretory pathway must be important for quality control and integrity of secretion.  相似文献   

2.
The Chaperonin 60 (Cpn60) proteins have, in addition to their well-known functions of protein folding and protection, a range of intercellular signalling activities. As part of a study to investigate the biological activity of the Cpn60 proteins, particularly from pathogenic organisms, we have cloned and expressed three Cpn60 proteins from Homo sapiens, Helicobacter pylori and Chlamydia pneumoniae. The Cpn60 proteins were purified to apparent homogeneity using a combination of nickel column affinity chromatography and Reactive Red dye affinity columns. Insoluble protein was solubilised using 8 M urea and then re-folded on the nickel column by stepwise removal of the urea. The immunostimulant LPS was removed by addition of the antibiotic polymyxin B as part of the purification process.  相似文献   

3.
Two different cDNA clones, pMCPN60-1 and pMCPN60-2, encoding the mitochondrial homologues of chaperonin 60 (Cpn60) were isolated from a cDNA library of germinating pumpkin cotyledons by use of mixtures of synthetic oligonucleotides based on the N-terminal amino acid sequence of the protein. Determination of the complete nucleotide sequences of the two cDNA revealed that pMCPN60-1 and pMCPN60-2 each contain one open reading frame that encodes a protein of 575 amino acids with molecular masses of 61052 Da and 61127 Da, respectively. The deduced amino acid sequences of the two polypeptides include a 32-residue N-terminal putative mitochondrial presequence attached to the mature polypeptides, and they are 95.3% identical. From a comparison of deduced amino acid sequences with other Cpn60, it appears that the mature polypeptides of pumpkin mitochondrial Cpn60 are 44-59% identical to the other Cpn60, namely, GroEL of Escherichia coli, the 60-kDa heat-shock protein (Hsp60) of mitochondria in the yeast Saccharomyces cerevisiae, P1 protein of mammalian mitochondria and the Ribulose-1,5-bisphosphate carboxylase/oxygenase subunit-binding proteins alpha and beta of plastids in higher plants. Genomic Southern-blot analysis identified at least two copies of the gene for mitochondrial Cpn60 in the pumpkin genome. The levels of mRNA for mitochondrial Cpn60 in cotyledons, hooks and hypocotyls of pumpkin seedlings increased in response to heat stress, as deduced from Northern-blot analysis, indicating that pumpkin mitochondrial Cpn60 is a heat-induced stress protein.  相似文献   

4.
Higher plant chloroplasts contain two chaperonin 60 family proteins, Cpn60alpha and Cpn60beta, which are known to have divergent amino acid sequences. Although Cpn60alpha and Cpn60beta are present in roughly equal amounts and copurify in their native states, a heterogeneous ensemble of the chaperonin oligomer has not yet been demonstrated. We separately purified Cpn60alpha and Cpn60beta proteins from spinach leaves as the monomeric form. Either antibody raised against one chaperonin 60 protein could coimmunoprecipitate the other chaperonin 60 protein in their oligomeric state but not in its monomeric state, suggesting that the chloroplast Cpn60alpha and Cpn60beta polypeptides actually reside in the same chaperonin oligomer in the stroma. Moreover, the chaperonin oligomers migrated as at least two distinct bands on the native gel electrophoresis, each of which contained both chaperonin 60 proteins. These results suggest that chloroplast chaperonin oligomers might be composed of at least two distinct sets of two chaperonin proteins.  相似文献   

5.
Type I chaperonins are large, double-ring complexes present in bacteria (GroEL), mitochondria (Hsp60), and chloroplasts (Cpn60), which are involved in mediating the folding of newly synthesized, translocated, or stress-denatured proteins. In Escherichia coli, GroEL comprises 14 identical subunits and has been exquisitely optimized to fold its broad range of substrates. However, multiple Cpn60 subunits with different expression profiles have evolved in chloroplasts. Here, we show that, in Arabidopsis thaliana, the minor subunit Cpn60β4 forms a heterooligomeric Cpn60 complex with Cpn60α1 and Cpn60β1-β3 and is specifically required for the folding of NdhH, a subunit of the chloroplast NADH dehydrogenase-like complex (NDH). Other Cpn60β subunits cannot complement the function of Cpn60β4. Furthermore, the unique C-terminus of Cpn60β4 is required for the full activity of the unique Cpn60 complex containing Cpn60β4 for folding of NdhH. Our findings suggest that this unusual kind of subunit enables the Cpn60 complex to assist the folding of some particular substrates, whereas other dominant Cpn60 subunits maintain a housekeeping chaperonin function by facilitating the folding of other obligate substrates.  相似文献   

6.
Chaperonin (Cpn) is one of the molecular chaperones. Cpn10 is a co-factor of Cpn60, which regulates Cpn60-mediated protein folding. It is known that Cpn10 is located in mitochondria and chloroplasts in plant cells. The Escherichia coli homologue of Cpn10 is called GroES. A cDNA for the Cpn10 homologue was isolated from Arabidopsis thaliana by functional complementation of the E. coli groES mutant. The cDNA was 647 bp long and encoded a polypeptide of 98 amino acids. The deduced amino acid sequence showed approximately 50% identity to mammalian mitochondrial Cpn10s and 30% identity to GroES. A Northern blot analysis revealed that the mRNA for the Cpn10 homologue was expressed uniformly in various organs and was markedly induced by heat-shock treatment. The Cpn10 homologue was constitutively expressed in transgenic tobaccos. Immunogold and immunoblot analyses following the subcellular fractionation of leaves from transgenic tobaccos revealed that the Cpn10 homologue was localized in mitochondria and accumulated at a high level in transgenic tobaccos.  相似文献   

7.
As part of a program of work to understand the interaction of bacterial chaperonins with human leukocytes, we have examined 2 of the 3 chaperonin 60 (Cpn 60) gene products of the nonpathogenic plant symbiotic bacterium, Rhizobium leguminosarum, for their capacity to induce the production of pro- and antiinflammatory cytokines by human cells. Recombinant R. leguminosarum Cpn 60.1 and 60.3 proteins were added to human monocytes at a range of concentrations, and cytokine production was measured by sandwich enzyme-linked immunosorbent assay. In spite of the fact that the 2 R. leguminosarum Cpn 60 proteins share 74.5% amino acid sequence identity, it was found that Cpn 60.3 induced the production of interleukin (IL)-1beta, tumor necrosis factor alpha, IL-6, IL-8, IL-10, and IL-12, but not IL-4, interferon gamma, or GM-CSF (granulocyte-macrophage colony-stimulating factor), whereas the Cpn 60.1 protein failed to demonstrate any cytokine-inducing activity. The use of neutralizing monoclonal antibodies showed that the cytokine-inducing activity of Cpn 60.3 was dependent on its interaction with CD14. This demonstrates that CD14 mediates not only lipopolysaccharide but also R. leguminosarum Cpn 60.3 cell signaling in human monocytes.  相似文献   

8.
Li XL  Li K  Li YY  Feng Y  Gong Q  Li YN  Li XJ  Chen CJ 《Cell stress & chaperones》2009,14(2):199-206
The expression of heat-shock protein 60 (also known as chaperonin 60, Cpn60) in experimental acute pancreatitis (AP) is considered to play an active role in the prevention of abnormal enzyme accumulation and activation in pancreatic acinar cells. However, there are controversial results in the literature regarding the relationship between the abnormality of Cpn60 expression and AP onset and development. The purpose of this study was to investigate the alternations of Cpn60 expression and the relationship between the abnormal expression of Cpn60 and AP progression in rat severe acute pancreatitis (SAP) models. In this report, we induced SAP in Sprague–Dawley (SD) rats by reverse injection of sodium deoxycholate into the pancreatic duct, and examined the dynamic changes of Cpn60 expression in pancreatic tissues from different time points and at different levels with techniques of real-time PCR, western blotting, and immunohistochemistry. At 1 h after SAP induction, the expression of Cpn60 mRNA in the AP pancreatic tissues was higher than those in the sham-operation group and normal control group, but decreased sharply as the time period was extended, and there was a significant difference between 1 h and 10 h after SAP induction (p < 0.05). In the AP process, Cpn60 protein expression showed transient elevation as well, and the increased protein expression occurred predominantly in affected, but not totally destroyed, pancreatic acinar cells. As AP progressed, the pancreatic tissues were seriously damaged, leading to a decreased overall Cpn60 protein expression. Our results show a complex pattern of Cpn60 expression in pancreatic tissues of SAP rats, and the causality between the damage of pancreatic tissues and the decrease of Cpn60 level needs to be investigated further. Xue-Li Li and Kun Li contributed equally to this work.  相似文献   

9.
The cpn60 and cpn10 genes from psychrophilic bacterium, Oleispira antarctica RB8, showed a positive effect in Escherichia coli growth at low temperature, shifting its theoretical minimal growth temperature from +7.5 degrees C to -13.7 degrees C [Ferrer, M., Chernikova, T.N., Yakimov, M., Golyshin, P.N., and Timmis, K.N. (2003) Nature Biotechnol 21: 1266-1267]. To provide experimental support for this finding, Cpn60 and 10 were overproduced in E. coli and purified to apparent homogeneity. Recombinant O.Cpn60 was identical to the native protein based on tetradecameric structure, and it dissociates during native PAGE. Gel filtration and native PAGE revealed that, in vivo and in vitro, (O.Cpn60)(7) was the active oligomer at 4-10 degrees C, whereas at > 10 degrees C, this complex was converted to (O.Cpn60)(14). The dissociation reduces the ATP consumption (energy-saving mechanism) and increases the refolding capacity at low temperatures. In order for this transition to occur, we demonstrated that K468 and S471 may play a key role in conforming the more advantageous oligomeric state in O.Cpn60. We have proved this hypothesis by showing that single and double mutations in K468 and S471 for T and G, as in E.GroEL, produced a more stable double-ring oligomer. The optimum temperature for ATPase and chaperone activity for the wild-type chaperonin was 24-28 degrees C and 4-18 degrees C, whereas that for the mutants was 45-55 degrees C and 14-36 degrees C respectively. The temperature inducing unfolding (T(M)) increased from 45 degrees C to more than 65 degrees C. In contrast, a single ring mutant, O.Cpn60(SR), with three amino acid substitutions (E461A, S463A and V464A) was as stable as the wild type but possessed refolding activity below 10 degrees C. Above 10 degrees C, this complex lost refolding capacity to the detriment of the double ring, which was not an efficient chaperone at 4 degrees C as the single ring variant. We demonstrated that expression of O.Cpn60(WT) and O.Cpn60(SR) leads to a higher growth of E. coli at 4 degrees C ( micro (max), 0.22 and 0.36 h(-1) respectively), whereas at 10-15 degrees C, only E. coli cells expressing O.Cpn60 or O.Cpn60(DR) grew better than parental cells (-cpn). These results clearly indicate that the single-to-double ring transition in Oleispira chaperonin is a wild-type mechanism for its thermal acclimation. Although previous studies have also reported single-to-double ring transitions under many circumstances, this is the first clear indication that single-ring chaperonins are necessary to support growth when the temperature falls from 37 degrees C to 4 degrees C.  相似文献   

10.
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60’s obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.  相似文献   

11.
The cell biology of the chaperonins (Cpns) has been intensively studied over the past 25 years. These ubiquitous and essential molecules assist proteins to fold into their native state and function to protect proteins from denaturation after stress. The structure of the most widely studied Cpn60, Escherichia coli GroEL, has been solved and its mechanism of protein folding action largely established. But in the last decade, evidence has accumulated to suggest that the Cpn60s have functions in addition to intracellular protein folding, particularly the ability to act as intercellular signals with a wide variety of biological effects. Cpn60 has the ability to stimulate cells to produce proinflammatory cytokines and other proteins involved in immunity and inflammation and may, therefore, provide a link between innate and adaptive immunity. Cpn60s are also thought to be pathogenic factors in a wide range of diseases and have recently been reported to be present in the circulation of normal subjects and those with heart disease. An interesting facet of these proteins is the finding that in spite of significant sequence conservation, individual Cpn60 proteins can express very different biological activities. This review discusses the work to date, which has revealed the cell-cell signaling actions of Cpn60 proteins.  相似文献   

12.
The process of protein folding in the cell is now known to depend on the action of other proteins. These proteins include molecular chaperones, Which interact non-covalently with proteins as they fold and improve the final yields of active protein in the cell. The precise mechanism by which molecular chaperones act is obscure. Experiments reported recently(1) show that for one molecular chaperone (Cpn60, typified by the E. coli protein GroEL), the folding reaction is driven by cycles of binding and release of the co-chaperone Cpn10 (known as GroES in E. coli). These alternate with binding and release of the unfolded protein substrate. These cycles come about because of the opposite effects of Cpn10 and unfolded protein on the Cpn60 complex: the former stabilises the ADP-bound state of Cpn60, whereas the latter stimulates ADP-ATP exchange. This model proposes that the substrate protein goes through multiple cycles of binding and release, and is released into the cavity of the Cpn60 complex where it can undergo folding without interacting with other nearby folding intermediates. This is consistent with the ability of Cpn60 proteins to enhance folding by blocking pathways to aggregation.  相似文献   

13.
To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10) interacts with heat shock protein 60 (HSP60) and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS) generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.  相似文献   

14.
Intron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60. Heterologous Cpn60 protein was used in RNA protein gel mobility shift assays and revealed that the ATPase domains of Cpn60 mediates the specific binding of two group II intron RNAs, derived from the homologous chloroplast psaA gene and the heterologous mitochondrial LSU rRNA gene. The function of Cpn60 as a general organelle splicing factor is discussed.  相似文献   

15.
Chaperonins are a class of molecular chaperone, present in bacteria, mitochondria and chloroplasts, that are involved in protein folding and assembly in many organisms. Plastid α and β chaperonins have been suggested to be involved specifically in the assembly of Ribulose bisphosphate carboxylase/oxygenase. However, to date there is no direct evidence to confirm the in vivo role of plastid chaperonin 60 polypeptides as molecular chaperones. This paper reports on the production, by means of antisense technology, of transgenic tobacco plants with reduced levels of chaperonin 60β (Cpn60β). Antisense cpn 60β plants showed drastic phenotypic alterations including slow growth, delayed flowering, stunting and leaf chlorosis. The most extreme effect appeared to be lethality suggesting that cpn 60β functions are essential for viability. Cpn60β antisense plants accumulated Rubisco to specific activities equal to or higher than that of controls and had high plastid starch contents. These observations are discussed with respect to the suggestion that chaperonin is required for the assembly of active Rubisco in vivo . In addition, metabolic alterations in the antisense transgenic plants such as reduced soluble carbohydrate content as well as higher levels of starch in chloroplasts, suggest that Cpn60β may be required for import, assembly or membrane insertion of several chloroplast membrane proteins. These results are in agreements with the proposed role of Cpn60β as a molecular chaperone.  相似文献   

16.
Early pregnancy factor (EPF) is a secreted protein with immunosuppressive and growth factor properties. It has been shown to suppress the delayed-type hypersensitivity response in mice as well as acute and chronic forms of experimental autoimmune encephalomyelitis in rats and mice, respectively. In previous studies, we have demonstrated that EPF binds to a population of lymphocytes and we hypothesized that it mediates its suppressive effects by binding to CD4+ T cells. In the present study, we isolated monocytes and subpopulations of lymphocytes and labelled them with fluoresceinated EPF in order to determine which populations bind EPF. We demonstrated that EPF binds specifically to CD4+, CD8+, CD14+ (monocytes) and CD56+ NK cells but not to CD19+ B cells. The identity of the molecule(s) on the cell surface that is targeted by EPF is unknown, but as EPF is an extracellular homologue of the intracellular protein chaperonin 10 (Cpn10), we examined the possibility that the EPF receptor is a membrane-associated form of chaperonin 60 (Cpn60), the functional associate of Cpn10 within the cell. The EPF target molecule on lymphocytes was visualized by chemical cross-linking of exogenous iodinated Cpn10 to cells and probed with anti-Cpn60. The effect of anti-Cpn60 on activity in the EPF bioassay, the rosette inhibition test, was also examined. In both instances, no specific interaction of this antibody and the putative receptor was observed. It was concluded that the cell surface molecule targeted by EPF is unlikely to be a homologue of Cpn60.  相似文献   

17.
The cpn60 gene from Bacillus strain MS, which is highly homologous to Bacillus stearothermophilus, was cloned. Cpn60 with a hexahistidine affinity tag (His)(6) fused to its C-terminus (cpn60-(His)(6)) was overproduced in Escherichia coli. Cpn60-(His)(6) was expressed in a soluble form in E. coli. and purified to homogeneity in a single step by nickel chelate affinity chromatography. Cpn60-(His)(6) formed a tetradecamer and had ATPase activity. Cpn60-(His)(6) mediated refolding of guanidine hydrochloride unfolded pig heart malic dehydrogenase (MDH) and Thermus flavus MDH at 25 and 70 degrees C, respectively, in an ATP-dependent manner. In addition, cpn60-(His)(6) prevented heat denaturation of pig heart MDH and T. flavus MDH at 30 and 80 degrees C, respectively, in an ATP-dependent manner. Therefore, cpn60-(His)(6) facilitates protein refolding and prevents heat denaturation of proteins across a wide temperature range.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号