首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

3.
Effects of trypsin and pronase on D-xylose uptake were studied on isolated frog sartorius muscle. Trypsin and pronase exerted insulin-like effects on the transport of sugar. The acceleration of xylose transport by insulin was reduced by a prior incubation of muscles with trypsin or pronase. The inhibition of insulin effect was not due to destruction of the hormone. Proteases had no effect upon the sugar transport stimulated by DNP or potassium contracture. A conclusion is made of the availability in the frog muscle membrane of some insulin receptor similar to that reported for muscle tissue and fat cells of mammals.  相似文献   

4.
It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin (Standaert, M. L., Farese, R. V., Cooper, R. D., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle. Exposure to PLC-Cp activated glycogen phosphorylase and potentiated twitch tension in response to electrical stimulation, providing evidence that PLC-Cp increases cytoplasmic Ca2+ concentration. Dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, completely blocked both the activation of phosphorylase and the stimulation of glucose transport by PLC-Cp. These findings provide evidence that an increase in cytoplasmic Ca2+ concentration is involved in the activation of glucose transport in skeletal muscle by PLC-Cp.  相似文献   

5.
The aim of our work was to investigate a possible role of protein kinase C (PKC) in insulin-stimulated glucose uptake in mouse skeletal muscle, and to search for a defect in PKC activation in insulin resistance found in obesity. In isolated soleus muscle of lean mice, insulin (100 nM) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (1 microM) acutely stimulated glucose uptake 3- and 2-fold respectively. The effects of insulin and TPA were not additive. When PKC activity was down-regulated by long-term (24 h) TPA pretreatment, before measurement of glucose transport, the TPA effect was abolished, but in addition insulin-stimulated glucose transport returned to basal values. Furthermore, polymyxin B, which inhibits PKC in muscle extracts, prevented insulin-stimulated glucose uptake in muscle. In muscle of obese insulin-resistant mice, glucose uptake evoked by insulin was decreased, whereas the TPA effect, expressed as a fold increase, was unaltered. Thus both agents stimulated glucose transport to the same extent. Furthermore, no difference was observed when PKC activation by TPA was measured in muscle from lean and obese mice. These results suggest that: (1) PKC is involved in the insulin effect on glucose transport in muscle; (2) PKC activation explains only part of the insulin stimulation of glucose transport; (3) the defect in insulin response in obese mice does not appear to be due to an alteration in the PKC-dependent component of glucose transport. We propose that insulin stimulation of glucose uptake occurs by a sequential two-step mechanism, with first translocation of transporters to the plasma membrane, which is PKC dependent, and second, activation of the glucose transporters. In obesity only the activation step was decreased, whereas the translocation step was unaltered.  相似文献   

6.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

7.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

8.
There is good evidence from cell lines and rodents that elevated protein kinase C (PKC) overexpression/activity causes insulin resistance. Therefore, the present study determined the effects of PKC activation/inhibition on insulin-mediated glucose transport in incubated human skeletal muscle and primary adipocytes to discern a potential role for PKC in insulin action. Rectus abdominus muscle strips or adipocytes from obese, insulin-resistant, and insulin-sensitive patients were incubated in vitro under basal and insulin (100 nM)-stimulated conditions in the presence of GF 109203X (GF), a PKC inhibitor, or 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a PKC activator. PKC inhibition had no effect on basal glucose transport. GF increased (P < 0.05) insulin-stimulated 2-deoxyglucose (2-DOG) transport approximately twofold above basal. GF plus insulin also increased (P < 0.05) insulin receptor tyrosine phosphorylation 48% and phosphatidylinositol 3-kinase (PI 3-kinase) activity approximately 50% (P < 0.05) vs. insulin treatment alone. Similar results for GF on glucose uptake were observed in human primary adipocytes. Further support for the hypothesis that elevated PKC activity is related to insulin resistance comes from the finding that PKC activation by dPPA was associated with a 40% decrease (P < 0.05) in insulin-stimulated 2-DOG transport. Incubation of insulin-sensitive muscles with GF also resulted in enhanced insulin action ( approximately 3-fold above basal). These data demonstrate that certain PKC inhibitors augment insulin-mediated glucose uptake and suggest that PKC may modulate insulin action in human skeletal muscle.  相似文献   

9.
Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transport in rat skeletal muscle. Sixteen subjects cycled for 120 min at ~60 ± 2% Vo(2) peak. Two skeletal muscle biopsies were taken at rest and again following cycling. In a parallel study, eight Sprague-Dawley rats ran for 120 min at 20 m/min, whereas eight rats acted as nonrunning controls. Giant sarcolemmal vesicles were prepared, and protein content of FAT/CD36 and FABPpm was measured in human and rat vesicles and whole muscle homogenate. Palmitate uptake was measured in the rat vesicles. In human muscle, plasma membrane FAT/CD36 and FABPpm protein contents increased 75 and 20%, respectively, following 120 min of exercise. In rat muscle, plasma membrane FAT/CD36 and FABPpm increased 20 and 30%, respectively, and correlated with a 30% increase in palmitate transport following 120 min of running. These data suggest that the translocation of FAT/CD36 and FABPpm to the plasma membrane in rat skeletal muscle is related to the increase in fatty acid transport and oxidation that occurs with endurance running. This study is also the first to demonstrate that endurance cycling induces an increase in plasma membrane FAT/CD36 and FABPpm content in human skeletal muscle, which is predicted to increase fatty acid transport.  相似文献   

10.
The primary purpose of this investigation was to determine the relationship between phospholipase C (PLC) and diacylglycerol (DAG) sensitive protein kinase C isoforms in insulin signaling in skeletal muscle. Using an in vitro preparation of rat soleus muscle we found that insulin (0.6 nM) stimulated glucose transport was inhibited approximately 20 and 25% by the PKC inhibitor GF109203X and the phospholipase C inhibitor U73122 respectively (p<0.05). The combined effects of these inhibitors were no greater than the inhibitory effects of either compound alone. Western blot analysis revealed that insulin induced a redistribution of PKC beta II from the cytosol to the membrane that was reversed in the presence of GF109203X (1 microM) and U73122 (20 microM). Similarly, U73122 and GF109203X reversed the insulin induced increase in membrane associated phosphorylated (ser 660) PKC beta II. The novel finding of this investigation is that insulin induces an increase in PKC beta II translocation and phosphorylation through a U73122 sensitive pathway in quantatively the most important insulin responsive tissue, skeletal muscle. Furthermore, these results imply that PKC beta II may be one of the DAG sensitive isoforms involved in glucose transport.  相似文献   

11.
There is substantial molecular, biochemical and physiologic evidence that long-chain fatty acid transport involves a protein-mediated process. A number of fatty acid transport proteins have been identified, and for unknown reasons, some of these are coexpressed in the same tissues. In muscle and heart FAT/CD36 and FABPpm appear to be key transporters. Both proteins are regulated acutely (within minutes) and chronically (hours to days) by selected physiologic stimuli (insulin, AMP kinase activation). Acute regulation involves the translocation of FAT/CD36 by insulin, muscle contraction and AMP kinase activation, while FABPpm is induced to translocate by muscle contraction and AMP kinase activation, but not by insulin. Protein expression ofFAT/CD36 and FABPpm is regulated by prolonged AMP kinase activation (heart) or increased muscle contraction. Prolonged insulin exposure increases the expression of FAT/CD36 but not FABPpm. Trafficking of fatty acid transporters between an intracellular compartment(s) and the plasma membrane is altered in insulin-resistant skeletal muscle, as some FAT/CD36 is permanently relocated to plasma membrane, thereby contributing to insulin resistance due to the increased influx of fatty acids into muscle cells. Studies in FAT/CD36 null mice have revealed that this transporter is key to regulating the increase in the rate of fatty acid metabolism in heart and skeletal muscle. It appears based on a number of experiments that FAT/CD36 and FABPpm may collaborate to increase the rates of fatty acid transport, as these proteins co-immunoprecipitate.  相似文献   

12.
The effect of insulin concentrations on the rates of glycolysis and glycogen synthesis in four different in vitro rat muscle preparations (intact soleus, stripped soleus, epitrochlearis, and hemi-diaphragm) were investigated: the concentrations of insulin that produced half-maximal stimulation of the rates of these two processes in the four muscle preparations were similar - about 100 muunits/ml. This is at least 10-fold greater than the concentration that produced half-maximal inhibition of lipolysis in isolated adipocytes. Since 100 muunits/ml insulin is outside the normal physiological range in the rat, it is suggested that, in vivo, insulin influences glucose utilization in muscle mainly indirectly, via changes in the plasma fatty acid levels and the 'glucose/fatty acid cycle'. Consequently the view that insulin stimulates glucose utilization in muscle mainly by a direct effect on membrane transport must be treated with caution.  相似文献   

13.
ATP can function as a feedback inhibitor of sugar transport in skeletal muscle. This regulates the availability of the sugar according to the metabolic needs of the cell. In muscle and adipose tissue, ATP has a permissive effect on the stimulation of sugar transport by insulin, which has been explained as the provision of energy for the process of translocation of glucose carriers to and from the plasma membrane. Inhibitory effects of exogenous ATP on insulin binding and action and the recent demonstration that the insulin receptor is a tyrosine-specific protein kinase, indicate that there may be several disparate mechanisms whereby ATP may influence sugar transport.  相似文献   

14.
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.  相似文献   

15.
It has been suggested that the insulin-induced hyperpolarization might be a mediator of the stimulatory action of insulin on glucose transport. The purpose of the present study was to investigate the relationship between the insulin-induced hyperpolarization and the stimulatory action of insulin on glucose transport in skeletal muscle. Satorius muscles dissected from bullfrogs (Rana catesbeiana) were used. Insulin induced a hyperpolarization of the membrane and an increase in the 3-O-Methyl-D-glucose (3-O-MG) uptake and extrusion. In the presence of valinomycin, insulin had no significant effect on the membrane potential. Insulin still had the stimulatory action on both the 3-O-MG uptake and extrusion even in the presence of valinomycin, under whose condition insulin had no significant effect on the membrane potential. The magnitude of the stimulatory action of insulin on the 3-O-MG uptake in the presence of valinomycin was smaller than that in the absence of valinomycin. The magnitude of the stimulatory action of insulin on the 3-O-MG extrusion was, on the contrary, larger than that in the absence of valinomycin. The abolishment of the insulin-induced hyperpolarization decreased the 3-O-MG uptake and increased the 3-O-MG extrusion. The observation in the present study concludes that insulin has two different actions on glucose transport. One of them is developed through the insulin-induced hyperpolarization, which increases the 3-O-MG uptake and decreases the 3-O-MG extrusion. The other action is irrelevant of the insulin-induced hyperpolarization and stimulates both the 3-O-MG uptake and extrusion.  相似文献   

16.
It has been reported that treatment of cultured human skeletal muscle myotubes with the peroxisome proliferator-activated receptor-delta (PPARdelta) activator GW-501516 directly stimulates glucose transport and enhances insulin action. Cultured myotubes are minimally responsive to insulin stimulation of glucose transport and are not a good model for studying skeletal muscle glucose transport. The purpose of this study was to evaluate the effect of GW-501516 on glucose transport to determine whether the findings on cultured myotubes have relevance to skeletal muscle. Rat epitrochlearis and soleus muscles were treated for 6 h with 10, 100, or 500 nM GW-501516, followed by measurement of 2-deoxyglucose uptake. GW-501516 had no effect on glucose uptake. There was no effect on insulin sensitivity or responsiveness. Also, in contrast to findings on myotubes, treatment of muscles with GW-501516 did not result in increased phosphorylation or increased expression of AMP-activated protein kinase (AMPK) or p38 mitogen-activated protein kinase (MAPK). Treatment of epitrochlearis muscles with GW-501516 for 24 h induced a threefold increase in uncoupling protein-3 mRNA, providing evidence that the GW-501516 compound that we used gets into and is active in skeletal muscle. In conclusion, our results show that, in contrast to myotubes in culture, skeletal muscle does not respond to GW-501516 with 1) an increase in AMPK or p38 MAPK phosphorylation or expression or 2) direct stimulation of glucose transport or enhanced insulin action.  相似文献   

17.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

18.
To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3-O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose. The latter reflects a preference of hexokinase for glucose over 2-deoxyglucose. Cellular NAD(P)H autofluorescence, measured using two-photon excitation microscopy, is both sensitive to insulin and indicative of additional distal control steps in glucose metabolism. Whereas the predominant effect of insulin in human skeletal muscle cells is to enhance glucose transport, phosphorylation, and steps beyond, it also determines the overall rate of glucose metabolism.  相似文献   

19.
An improved immunogold labeling procedure was used to examine the subcellular distribution of glucose transporters in Lowricryl HM20- embedded skeletal muscle from transgenic mice overexpressing either Glut1 or Glut4. In basal muscle, Glut4 was highly enriched in membranes of the transverse tubules and the terminal cisternae of the triadic junctions. Less than 10% of total muscle Glut4 was present in the vicinity of the sarcolemmal membrane. Insulin treatment increased the number of gold particles associated with the transverse tubules and the sarcolemma by three-fold. However, insulin also increased the total Glut4 immunogold reactivity in muscle ultrathin sections by up to 1.8- fold and dramatically increased the amount of Glut4 in muscle sections as observed by laser confocal immunofluorescence microscopy. The average diameter of transverse tubules observed in longitudinal sections increased by 50% after insulin treatment. Glut1 was highly enriched in the sarcolemma, both in the basal state and after insulin treatment. Disruption of transverse tubule morphology by in vitro glycerol shock completely abolished insulin-stimulated glucose transport in isolated rat epitrochlearis muscles. These data indicate that: (a) Glut1 and Glut4 are targeted to distinct plasma membrane domains in skeletal muscle; (b) Glut1 contributes to basal transport at the sarcolemma and the bulk of insulin-stimulated transport is mediated by Glut4 localized in the transverse tubules; (c) insulin increases the apparent surface area of transverse tubules in skeletal muscle; and (d) insulin causes the unmasking of a COOH-terminal antigenic epitope in skeletal muscle in much the same fashion as it does in rat adipocytes.  相似文献   

20.
The distribution of glucose transporters and of insulin receptors on the surface membranes of skeletal muscle was studied, using isolated plasma membranes and transverse tubule preparations. (i) Plasma membranes from rabbit skeletal muscle were prepared according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13862-13871), and transverse tubules from rabbit skeletal muscle were prepared according to Rosemblatt et al. (1981, J. Biol. Chem. 256, 8140-8148) as modified by Hidalgo et al. (1983, J. Biol. Chem. 258, 13937-13945). The membranes were identified by the abundance of nitrendipine receptors in the transverse tubules, and their relative absence from the plasma membranes. (ii) Plasma membranes and transverse tubules were also isolated from rat skeletal muscle, according to a novel procedure that isolates both fractions from the same common homogenate. (iii) Glucose transporters were detected by D-glucose protectable binding of the specific inhibitor [3H]cytochalasin B, and insulin receptors were detected by saturable binding of 125I-insulin. The concentration of glucose transporters was about threefold (rabbit) or fivefold (rat) higher in the transverse tubule membrane compared to the plasma membrane, whereas the insulin receptor concentration was about the same in both membranes. These results indicate that the glucose transporters on the surface of the muscle are preferentially segregated to the transverse tubules, and this poses interesting consequences on the functional response of glucose transport to insulin in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号