首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA microarray-based screening and diagnostic technologies have long promised comprehensive testing capabilities. However, the potential of these powerful tools has been limited by front-end target-specific nucleic acid amplification. Despite the sensitivity and specificity associated with PCR amplification, the inherent bias and limited throughput of this approach constrain the principal benefits of downstream microarray-based applications, especially for pathogen detection. To begin addressing alternative approaches, we investigated four front-end amplification strategies: random primed, isothermal Klenow fragment-based, 29 DNA polymerase-based, and multiplex PCR. The utility of each amplification strategy was assessed by hybridizing amplicons to microarrays consisting of 70-mer oligonucleotide probes specific for enterohemorrhagic Escherichia coli O157:H7 and by quantitating their sensitivities for the detection of O157:H7 in laboratory and environmental samples. Although nearly identical levels of hybridization specificity were achieved for each method, multiplex PCR was at least 3 orders of magnitude more sensitive than any individual random amplification approach. However, the use of Klenow-plus-Klenow and 29 polymerase-plus-Klenow tandem random amplification strategies provided better sensitivities than multiplex PCR. In addition, amplification biases among the five genetic loci tested were 2- to 20-fold for the random approaches, in contrast to >4 orders of magnitude for multiplex PCR. The same random amplification strategies were also able to detect all five diagnostic targets in a spiked environmental water sample that contained a 63-fold excess of contaminating DNA. The results presented here underscore the feasibility of using random amplification approaches and begin to systematically address the versatility of these approaches for unbiased pathogen detection from environmental sources.  相似文献   

2.
AIMS: To evaluate the suitability of a multiplex PCR-based assay for sensitive and rapid detection of Escherichia coli O157:H7 in soil and water. METHODS AND RESULTS: Soil and water samples were spiked with E. coli O157:H7 and subjected to two stages of enrichment prior to multiplex PCR. Detection sensitivities were as high as 1 cfu ml(-1) drinking water and 2 cfu g(-1) soil. Starvation of E. coli O157:H7 for 35 d prior to addition to soil did not affect the ability of the assay to detect initial cell numbers as low as 10 cfu g(-1) soil. Use of an 8-h primary enrichment enabled detection of as few as 6 cfu g(-1) soil, and 10(4) cfu g(-1) soil with a 6-h primary enrichment. When soil was inoculated with 10(5) cfu g(-1), the PCR assay indicated persistence of E. coli O157:H7 during a 35 d incubation. However, when soil was inoculated with lower numbers of pathogen, PCR amplification signals indicated survival to be dependent on cell concentration. CONCLUSIONS: A multiplex PCR-based assay, in combination with an enrichment strategy enabled sensitive and rapid detection of E. coli O157:H7 in soil and water. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect E.coli O157:H7 in environmental material within one working day represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen.  相似文献   

3.
The present paper describes a new approach for diagnosis of apple proliferation (AP) phytoplasma in plant material using a multiplex real-time PCR assay simultaneously amplifying a fragment of the pathogen 16S rRNA gene and the host, Malus domestica, chloroplast gene coding for tRNA leucine. For the first time, such an approach, with an internal analytical control, is described in a diagnostic procedure for plant pathogenic phytoplasmas enabling distinction between uninfected plant material and false-negative results caused by PCR inhibition. Pathogen detection is based on the highly conserved 16S rRNA gene to ensure amplification of different AP phytoplasma strains. The newly designed primer/probe set allows specific detection of all examined AP strains, without amplifying other fruit tree phytoplasmas or more distantly related phytoplasma strains. Apart from its specificity, real-time PCR with serial dilutions of initial template DNA ranging over almost five orders of magnitude (undiluted to 80,000-fold diluted) demonstrated linear amplification over the whole range, while conventional PCR showed a reliable detection only up to 500-fold or 10,000-fold dilutions, respectively. Compared to existing analytical diagnostic procedures for phytoplasmas, a rapid, highly specific and highly sensitive diagnostic method becomes now available.  相似文献   

4.
We describe a scheme for biomolecule enumeration by converting nanometer-scale specific molecular recognition events mediated by rolling-circle amplification to fluorescent micrometer-sized DNA molecules amenable to discrete optical detection. Our amplified single-molecule detection (SMD) approach preserves the discrete nature of the molecular population, allowing multiplex detection and highly precise quantification of molecules over a dynamic range of seven orders of magnitude. We apply the method for sensitive detection and quantification of the bacterial pathogen Vibrio cholerae.  相似文献   

5.
应用两种基因组快速扩增方法进行病毒芯片杂交鉴定   总被引:2,自引:0,他引:2  
为了摸索均衡的病毒基因组扩增方法,建立高通量的病毒检测基因芯片技术平台,本研究以甲病毒属的辛德比斯病毒作为检测模型,分别以随机PCR扩增法和MDA( Multiple Displacement Amplification)扩增法扩增病毒基因组,并以两种扩增产物作为模板,扩增辛德比斯病毒的特异基因片段以验证基因组扩增的均衡性;然后将两种基因组扩增产物标记荧光染料后与基因芯片进行杂交;结果表明从两种基因组扩增产物中正确扩增出了辛德比斯的特定基因片段,作为探针可与基因芯片上的靶标基因特异性结合;基因组扩增产物与基因芯片进行杂交,可成功检测到甲病毒属的特异性信号,充分说明随机PCR扩增法和MDA扩增法用于扩增病毒基因组均具有良好的均衡性,扩增产物可用于病毒性病原体的基因芯片检测。  相似文献   

6.
Herein we present Gene-Collector, a method for multiplex amplification of nucleic acids. The procedure has been employed to successfully amplify the coding sequence of 10 human cancer genes in one assay with uniform abundance of the final products. Amplification is initiated by a multiplex PCR in this case with 170 primer pairs. Each PCR product is then specifically circularized by ligation on a Collector probe capable of juxtapositioning only the perfectly matched cognate primer pairs. Any amplification artifacts typically associated with multiplex PCR derived from the use of many primer pairs such as false amplicons, primer-dimers etc. are not circularized and degraded by exonuclease treatment. Circular DNA molecules are then further enriched by randomly primed rolling circle replication. Amplification was successful for 90% of the targeted amplicons as seen by hybridization to a custom resequencing DNA micro-array. Real-time quantitative PCR revealed that 96% of the amplification products were all within 4-fold of the average abundance. Gene-Collector has utility for numerous applications such as high throughput resequencing, SNP analyses, and pathogen detection.  相似文献   

7.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

8.
Multiplex polymerase chain reaction (PCR), the amplification of multiple targets in a single reaction, presents a new set of challenges that further complicate more traditional PCR setups. These complications include a greater probability for nonspecific amplicon formation and for imbalanced amplification of different targets, each of which can compromise quantification and detection of multiple targets. Despite these difficulties, multiplex PCR is frequently used in applications such as pathogen detection, RNA quantification, mutation analysis, and (recently) next generation DNA sequencing. Here we investigated the utility of primers with one or two thermolabile 4-oxo-1-pentyl phosphotriester modifications in improving multiplex PCR performance. Initial endpoint and real-time analyses revealed a decrease in off-target amplification and a subsequent increase in amplicon yield. Furthermore, the use of modified primers in multiplex setups revealed a greater limit of detection and more uniform amplification of each target as compared with unmodified primers. Overall, the thermolabile modified primers present a novel and exciting avenue for improving multiplex PCR performance.  相似文献   

9.
A multiplex PCR assay specifically detecting Escherichia coli O157 : H7 was developed by employing primers amplifying a DNA sequence upstream of E. coli O157 : H7 eaeA gene and genes encoding Shiga-like toxins (SLT) I and II. Analysis of 151 bacterial strains revealed that all E. coli O157 : H7 strains were identified simultaneously with the SLT types and could be distinguished from E. coli O55 : H7 and E. coli 055 : NM, and other non-O157 SLT-producing E. coli strains. Primer design, reaction composition (in particular, primer quantity and ratios), and amplification profile were most important in development of this multiplex PCR. This assay can serve not only as a confirmation test but also potentially can be applied to detect the pathogen in food.  相似文献   

10.
Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. A multiplex PCR amplification-based detection of total and virulent strains of V. parahaemolyticus was developed by targeting thermolabile hemolysin encoded by tl, thermostable direct hemolysin encoded by tdh, and thermostable direct hemolysin-related trh genes. Following optimization using oligonucleotide primers targeting tl, tdh and trh genes, the multiplex PCR was applied to V. parahaemolyticus from 27 clinical, 43 seafood, 15 environmental, 7 strains obtained from various laboratories and 19 from oyster plants. All 111 V. parahaemolyticus isolates showed PCR amplification of the tl gene; however, only 60 isolates showed amplification of tdh, and 43 isolates showed amplification of the trh gene. Also, 18 strains showed amplification of the tdh gene, but these strains did not show amplification of the trh gene. However, one strain exhibited amplification for the trh but not the tdh gene, suggesting both genes need to be targeted in a PCR amplification reaction to detect all hemolysin-producing strains of this pathogen. The multiplex PCR approach was successfully used to detect various strains of V parahaemolyticus in seeded oyster tissue homogenate. Sensitivity of detection for all three target gene segments was at least between 10(1)-10(2) cfu per 10 g of alkaline peptone water enriched seeded oyster tissue homogenate. This high level of sensitivity of detection of this pathogen within 8 h of pre-enrichment is well within the action level (10(4) cfu per 1 g of shell stock) suggested by the National Seafood Sanitation Program guideline. Compared to conventional microbiological culture methods, this multiplex PCR approach is rapid and reliable for accomplishing a comprehensive detection of V. parahaemolyticus in shellfish.  相似文献   

11.
A multianalyte immunoassay for simultaneous detection of three analytes (hTSH, hCG and beta-Gal) has been demonstrated using DNA-labeled antibodies and polymerase chain reaction (PCR) for amplification of assay response. The labeled antibodies were prepared by covalently coupling uniquely designed DNA oligonucleotides to each of the analyte-specific monoclonal antibodies. Each of the DNA oligonucleotide labels contained the same primer sequences to facilitate co-amplification by a single primer pair. Assays were performed using a two-antibody sandwich assay format and a mixture of the three DNA-labeled antibodies. Dose-response relationships for each analyte were demonstrated. Analytes were detected at sensitivities exceeding those of conventional enzyme immunoassays by approximately three orders of magnitude. Detection limits for hTSH, beta-Gal and hCG were respectively 1 x 10(-19), 1 x 10(-17) and 1 x 10(-17) mol. Given the enormous amplification afforded by PCR and the existing capability to differentiate DNA based on size or sequence differences, the use of DNA-labeled antibodies could provide the basis for the simultaneous detection of many analytes at sensitivities greater than those of existing antigen detection systems. These findings in concert with previous reports suggest this hybrid technology could provide a new generation of ultra-sensitive multianalyte immunoassays.  相似文献   

12.
A robust random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR) protocol was developed for the combined epidemiological typing and shiga toxin detection of clinical shiga toxin-producing O157 and non-O157 Escherichia coli isolates. Using shiga toxin gene-specific primers, combined with two short 10-mer primers, in a multiplex shiga toxin/RAPD-PCR the fingerprints generated allowed differentiation between epidemiologically unrelated strains and allowed identification of a band amplified from the shiga toxin gene(s). Hybridization with a digoxigenin-labelled probe specific for stx1 and stx2 confirmed its identity. The combination of primers in this way allows valuable additional information to be gained from discriminatory RAPD profiles, with further benefits of time and cost savings over tests performed individually.  相似文献   

13.
A quantitative bioluminescence assay for rapid and sensitive microRNA (miRNA) expression analysis was developed. The assay uses miRNA directly as a primer for binding to a circular single-stranded DNA template, followed by rolling circle amplification. The detection of inorganic pyrophosphate (PPi) molecules released during the DNA polymerization and amplification process is performed by a multi-enzyme system. PPi is converted to ATP by ATP-sulfurylase, which provides energy for luciferase to oxidize luciferin and produce light. Experimental results show that the assay has a dynamic range exceeding three orders of magnitude and the ability to discriminate miRNAs with high-homology sequences. Quantification of nine miRNAs in human heart tissues demonstrated high cross-platform consistency between this assay and the TaqMan real-time polymerase chain reaction (PCR) assay with R(2)=0.941. The assay requires fewer reagents, can be performed at an isothermal condition without thermal cycling, and is capable of detecting miRNAs in less than 1h. Compared with the real-time PCR and microarray-based detection methods, this assay provides a simpler, faster, and less expensive platform for miRNA quantification in life science research, drug discovery, and clinical diagnosis.  相似文献   

14.
为了应对餐饮等食品中病原菌快速检测的需求、研究建立病原菌筛查方法,选取痢疾志贺氏菌(Shigella dysenteriae)、金黄色葡萄球菌(Staphylococcus aureus)、副溶血性弧菌(Vibrio parahaemolyticus)、阴沟肠杆菌(Enterobacter cloacae)、产气肠杆菌(Enterobacter aerogenes)、沙门氏菌(Salmonella)、蜡样芽胞杆菌(Bacillus cereus)、大肠埃希氏菌O157∶H7(Escherichia coli O157∶H7)、单核细胞增生李斯特氏菌(Listeria monocytogenes)等9种病原菌开展多重实时荧光PCR方法研究工作。为了节约预增菌时间与提升检测效率,研发了适用于多种病原菌预增菌的通用型培养基,采取高温裂解法提取菌液核酸,利用PMA染料灭活死亡细菌DNA,筛选出活菌DNA,采用多重实时荧光PCR技术检测目标菌,该方法可在16 h内完成检测,对于目标病原菌的检测低限可达103 CFU·mL-1。  相似文献   

15.
This study introduces a DNA microarray-based genotyping system for accessing single nucleotide polymorphisms (SNPs) directly from a genomic DNA sample. The described one-step approach combines multiplex amplification and allele-specific solid-phase PCR into an on-chip reaction platform. The multiplex amplification of genomic DNA and the genotyping reaction are both performed directly on the microarray in a single reaction. Oligonucleotides that interrogate single nucleotide positions within multiple genomic regions of interest are covalently tethered to a glass chip, allowing quick analysis of reaction products by fluorescence scanning. Due to a fourfold SNP detection approach employing simultaneous probing of sense and antisense strand information, genotypes can be automatically assigned and validated using a simple computer algorithm. We used the described procedure for parallel genotyping of 10 different polymorphisms in a single reaction and successfully analyzed more than 100 human DNA samples. More than 99% of genotype data were in agreement with data obtained in control experiments with allele-specific oligonucleotide hybridization and capillary sequencing. Our results suggest that this approach might constitute a powerful tool for the analysis of genetic variation.  相似文献   

16.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

17.
Detection, identification and quantification of plant pathogens are the cornerstones of preventive plant disease management. To detect multiple pathogens in a single assay, DNA array technology currently is the most suitable technique. However, for sensitive detection, polymerase chain reaction (PCR) amplification before array hybridization is required. To evaluate whether DNA array technology can be used to simultaneously detect and quantify multiple pathogens, a DNA macroarray was designed and optimized for accurate quantification over at least three orders of magnitude of the economically important vascular wilt pathogens Verticillium albo-atrum and Verticillium dahliae. A strong correlation was observed between hybridization signals and pathogen concentrations for standard DNA added to DNA from different origins and for infested samples. While accounting for specific criteria like amount of immobilized detector oligonucleotide and controls for PCR kinetics, accurate quantification of pathogens was achieved in concentration ranges typically encountered in horticultural practice. Subsequently, quantitative assessment of other tomato pathogens (Fusarium oxysporum, Fusarium solani, Pythium ultimum and Rhizoctonia solani) in environmental samples was performed using DNA array technology and correlated to measurements obtained using real-time PCR. As both methods of quantification showed a very high degree of correlation, the reliability and robustness of the DNA array technology is shown.  相似文献   

18.
AIMS: To assess the presence of virulence genes in environmental and foodborne Escherichia coli isolates using the TaqMan PCR system. METHODS AND RESULTS: Three TaqMan pathogen detection kits called O157:H7, StxI and StxII were used to investigate the presence of virulence genes in Escherichia coli isolates. All 54 foodborne E. coli O157:H7 isolates showed expected results using these kits. Ninety (15%) of 604 environmental isolates gave positive amplification with an O157:H7-specific kit. TaqMan PCR amplification products from these 90 isolates were analysed by agarose gel electrophoresis, and 90% (81 of 90) of the environmental samples contained the expected PCR product. Sixty-six of these 90 were chosen for serotyping tests and only 35% (23 of 66) showed agglutination with both anti-O157 and anti-H7 antibodies. Further ribotyping of 16 sero-positive isolates in an automated Riboprinter did not identify these to be O157:H7. Multiplex PCR with primers for eaeA, stxI and stxII genes was used to confirm the TaqMan results in 10 selected environmental isolates. CONCLUSIONS: All three TaqMan pathogen detection kits were useful for virulence gene analysis of prescreened foodborne O157:H7 isolates, while the O157:H7-specific kit may not be suitable for virulence gene analysis of environmental E. coli isolates, because of high false positive identification. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to rapidly identify the presence of pathogenic E. coli in food or environmental samples is essential to avert outbreaks. These results are of importance to microbiologists seeking to use TaqMan PCR to rapidly identify pathogenic E. coli in environmental samples. Furthermore, serotyping may not be a reliable method for identification of O157:H7 strains.  相似文献   

19.
Microbial assessment of natural biodiversity is usually achieved through polymerase chain reaction (PCR) amplification. Deoxyribonucleic acid (DNA) sequences from natural samples are often difficult to amplify because of the presence of PCR inhibitors or to the low number of copies of specific sequences. In this study, we propose a non-specific preamplification procedure to overcome the presence of inhibitors and to increase the number of copies prior to carrying out standard amplification by PCR. The pre-PCR step is carried out through a multiple displacement amplification (MDA) technique using random hexamers as priming oligonucleotides and phi 29 DNA polymerase in an isothermal, whole-genome amplification reaction. Polymerase chain reaction amplification using specific priming oligonucleotides allows the selection of the sequences of interest after a preamplification reaction from complex environmental samples. The procedure (MDA-PCR) has been tested on a natural microbial community from a hypogean environment and laboratory assemblages of known bacterial species, in both cases targeting the small subunit ribosomal RNA gene sequences. Results from the natural community showed successful amplifications using the two steps protocol proposed in this study while standard, direct PCR amplification resulted in no amplification product. Amplifications from a laboratory assemblage by the two-step proposed protocol were successful at bacterial concentrations >or= 10-fold lower than standard PCR. Amplifications carried out in the presence of different concentrations of fulvic acids (a soil humic fraction) by the MDA-PCR protocol generated PCR products at concentrations of fulvic acids over 10-fold higher than standard PCR amplifications. The proposed procedure (MDA-PCR) opens the possibility of detecting sequences represented at very low copy numbers, to work with minute samples, as well as to reduce the negative effects on PCR amplifications of some inhibitory substances commonly found in environmental samples.  相似文献   

20.
Escherichia coli O157:H7, the most common serotype of enterohemorrhagic E. coli (EHEC), is responsible for numerous food-borne and water-borne infections worldwide. An integrating waveguide biosensor is described for the detection of water-borne E. coli O157, based on a fluorescent sandwich immunoassay performed inside a glass capillary waveguide. The genomic DNA of captured E. coli O157 cells was extracted and quantitative real-time PCR subsequently performed to assess biosensor-capture efficiency. In vitro microbial growth in capillary waveguide is also documented. The biosensor allows for quantitative detection of as few as 10 cells per capillary (0.075 ml volume) and can be used in conjunction with cell amplification, PCR and microarray technologies to positively identify a pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号