首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To elucidate the repression mechanism of ammonium ions on the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702, enzyme activities involved in the metabolism of the aspartate family of amino acids were evaluated in relation to the ammonium ion concentration and tylosin production. It was found that aspartate aminotransferase was essential for both cell growth and tylosin production. However, both threonine dehydratase and valine dehydrogenase were repressed by supplemented ammonium ions at concentrations higher than 50 mM. Threonine dehydratase was purified from cell-free extracts by acetone precipitation, ion-exchange chromatography and gel filtration, and its molecular mass was estimated to be 67,200 Da. The optimum pH and temperature for threonine dehydratase activity were 7.5 and 25 degrees C, respectively, and the Km value for threonine under these optimum conditions was 21 mM. The inhibition pattern of ammonium ions on the activity of threonine dehydratase appeared to be a mixed type.  相似文献   

2.
Aspartate kinase and two homoserine dehydrogenases were partially purified from 4-day-old pea seedlings. A sensitive method for measuring aspartate kinase activity is described. Aspartate kinase activity was dependent upon ATP, Mg2+ or Mn2+, and aspartate. The aspartate kinase was inhibited in a sigmoidal manner by threonine and Ki for threonine was 0·57 mM. The enzyme could be desensitized to the inhibitor and threonine protected the enzyme against thermal inactivation. Aspartate kinase activity was enhanced by isoleucine, valine and alanine. Homoserine, methionine and lysine were without effect. The homoserine dehydrogenase activity which was associated with aspartate kinase during purification could be resolved into two peaks by gel filtration. The activity of both peaks was inhibited by aspartate and cysteine and one was inhibited by threonine.  相似文献   

3.
Abstract In Streptomyces fradiae l -threonine is catabolized by threonine dehydratase or threonine aldolase to 2-ketobutyrate or acetaldehyde and glycine, respectively. Threonine dehydratase synthesis is repressed and its activity is inhibited by NH4+ ions. Threonine aldolase is not repressed by NH4+ ions and its activity is slightly stimulated by these ions. The addition of threonine to the medium increased pronouncedly the fraction of non-branched fatty acids with an even carbon number under conditions when threonine dehydratase was repressed and inhibited. The results indicate that threonine serves as a source of propionyl-CoA and 2-methylbutyryl-CoA and also of acetyl-CoA required for tylosin and fatty acid biosynthesis.  相似文献   

4.
Aspartate aminotransferase (AspAT) was purified to homogeneity from cell extracts of the non-N2-fixing cyanobacterium Phormidium lapideum. The NH2-terminal sequence of 25 amino acid residues was different from the sequences of the subfamily Ialpha of AspATs from eukaryotes and Escherichia coli, but it was similar to sequences of the subfamily Igamma of AspATs from archaebacteria and eubacteria. The enzyme was most active at 80 degrees C and was stable at up to 75 degrees C. Thermal inactivation (60-85 degrees C) of the enzyme followed first-order kinetics, with 2-oxoglutarate causing a shift of the thermal inactivation curves to higher temperatures. However, at 25 degrees C the kcat of P. lapideum AspAT was nearly equal to the values of AspATs from mesophilic organisms. The enzyme used L-aspartate and L-cysteine sulfinate as amino donors and 2-oxoglutarate as an amino acceptor. The Km values were 5.0 mM for L-aspartate, 5.7 mM for L-glutamate, 0.2 mM for 2-oxoglutarate, and 0.032 mM for oxaloacetate.  相似文献   

5.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

6.
Aspartate aminotransferase from Lactobacillus murinus is thermostable, its activity being not changed for two months at temperatures between 4 and -70 degrees C. Maximum activity was observed at 40 degrees C and pH 7.3 in phosphate buffer (30 mmol/L). delta G* Value of 26.3 kJ/mol was calculated from the Arrhenius plot. The Km values for L-aspartate and 2-oxoglutarate at pH 7.3 were 25 and 100 mmol/L, respectively. Sodium maleate and glutamate acted as inhibitors of the enzyme activity. The Ki values for sodium maleate with L-aspartate of 2-oxoglutarate as variable substrates were 1.1 and 0.5 mmol/L, respectively. The Ki values for glutamate with L-aspartate or 2-oxoglutarate were 8.0 and 4.0 mmol/L, respectively. An inhibitory effect was observed with 1 mM Hg2+ ions (1 mmol/L). The activity of the enzyme was diminished by only 12% in the absence of pyridoxal 5'-phosphate.  相似文献   

7.
B Mckel  L Eggeling    H Sahm 《Journal of bacteriology》1992,174(24):8065-8072
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation.  相似文献   

8.
The gene encoding cyclohexadienyl dehydratase (denoted pheC) was cloned from Pseudomonas aeruginosa by functional complementation of a pheA auxotroph of Escherichia coli. The gene was highly expressed in E. coli due to the use of the high-copy number vector pUC18. The P. aeruginosa cyclohexadienyl dehydratase expressed in E. coli was purified to electrophoretic homogeneity. The latter enzyme exhibited identical physical and biochemical properties as those obtained for cyclohexadienyl dehydratase purified from P. aeruginosa. The activity ratios of prephenate dehydratase to arogenate dehydratase remained constant (about 3.3-fold) throughout purification, thus demonstrating a single protein having broad substrate specificity. The cyclohexadienyl dehydratase exhibited Km values of 0.42 mM for prephenate and 0.22 mM for L-arogenate, respectively. The pheC gene was 807 base pairs in length, encoding a protein with a calculated molecular mass of 30,480 daltons. This compares with a molecular mass value of 29.5 kDa determined for the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since the native molecular mass determined by gel filtration was 72 kDa, the enzyme probably is a homodimer. Comparison of the deduced amino acid sequence of pheC from P. aeruginosa with those of the prephenate dehydratases of Corynebacterium glutamicum, Bacillus subtilis, E. coli, and Pseudomonas stutzeri by standard pairwise alignments did not establish obvious homology. However, a more detailed analysis revealed a conserved motif (containing a threonine residue known to be essential for catalysis) that was shared by all of the dehydratase proteins.  相似文献   

9.
Metabolism of aspartate in Mycobacterium smegmatis   总被引:2,自引:0,他引:2  
Mycobacterium smegmatis grows best on L-asparagine as a sole nitrogen source; this was confirmed. [14C]Aspartate was taken up rapidly (46 nmol.mg dry cells-1.h-1 from 1 mM L-asparagine) and metabolised to CO2 as well as to amino acids synthesised through the aspartate pathway. Proportionately more radioactivity appeared in the amino acids in bacteria grown in medium containing low nitrogen. Activities of aspartokinase and homoserine dehydrogenase, the initial enzymes of the aspartate pathway, were carried by separate proteins. Aspartokinase was purified as three isoenzymes and represented up to 8% of the soluble protein of M. smegmatis. All three isoenzymes contained molecular mass subunits of 50 kDa and 11 kDa which showed no activity individually; full enzyme activity was recovered on pooling the subunits. Km values for aspartate were: aspartokinases I and III, 2.4 mM; aspartokinase II, 6.4 mM. Aspartokinase I was inhibited by threonine and homoserine and aspartokinase III by lysine, but aspartokinase II was not inhibited by any amino acids. Aspartokinase activity was repressed by methionine and lysine with a small residue of activity attributable to unrepressed aspartokinase I. Homoserine dehydrogenase activity was 96% inhibited by 2 mM threonine; isoleucine, cysteine and valine had lesser effects and in combination gave additive inhibition. Homoserine dehydrogenase was repressed by threonine and leucine. Only amino acids synthesised through the aspartate pathway were tested for inhibition and repression. Of these, only one, meso-diaminopimilate, had no discernable effect on either enzyme activity.  相似文献   

10.
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.  相似文献   

11.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100 degrees C. A pyridoxal 5'-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward L-serine, followed by L-threonine, D-serine, and D-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high L-serine/L-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95 degrees C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either L-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for L-serine were 185 mM and 20.1 micromol/min/mg, respectively, while the corresponding values of the dehydratase activity of L-serine were 2.2 mM and 80.4 micromol/min/mg, respectively.  相似文献   

12.
Nitrogen regulation in tylosin production by Streptomyces fradiae NRRL 2702 was studied in chemostat culture using a soluble synthetic medium. The maximum value of specific tylosin formation rate ( q TYL) was 1·13 mg g−1 h−1 at the specific growth rate (μ) of 0·05 h−1, and q TYL decreased with increasing levels of the specific growth rate after reaching a rate of 0·1 h−1. The optimum conditions for tylosin formation were that the specific ammonium ion uptake rate ( q N) and μ were 0·13 mmol g−1 h−1 and 0·05 h−1, respectively. The specific formation rates of threonine dehydratase (TDT) and tylosin were repressed by high levels of specific ammonium ion uptake rate. This study showed the adaptation to chemostat cultures of the nitrogen regulation of tylosin fermentations.  相似文献   

13.
Aspartate kinase (AK) from Saccharomyces cerevisiae has been characterized to elucidate its quaternary structure and the effect of the allosteric inhibitor threonine on the enzyme conformation. The homogeneously purified enzyme was inhibited by threonine (K(i) 1.4 mM) and was found to bind this compound (K(d) 0.97 mM) in a hyperbolic manner. Gel filtration and native gel electrophoresis indicated that yeast AK is a homohexamer of 346 kDa composed by 58 kDa subunits. Threonine caused a decrease in the apparent molecular mass of AK as evidenced by size-exclusion chromatography (from 345 to 280 kDa) and blue native gel electrophoresis (from 346 to 297 kDa); no other molecular species were detected. This shift in the hydrodynamic size was threonine-specific and was reversed by rechromatography in the absence of threonine. No change in the apparent molecular mass was induced by threonine in an AK mutant insensitive to inhibition by this amino acid, which was observed to be unable to bind threonine. These results indicate that the allosteric transition elicited by binding of threonine to yeast AK involves a large conformational change of the protein that isomerizes from a relaxed active conformation to a more compact inactive one of smaller molecular dimensions.  相似文献   

14.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

15.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   

16.
The effect of ammonium ions on growth and tylosin biosynthesis in Streptomyces fradiae NRRL 2702 cultured on a chemically defined medium was studied. Mycelial growth and tylosin production were not affected when ammonium sulphate was added to idiophase cultures to a final concentration of 10 mm or 20 mm; however, when ammonium sulphate was added to tylosin cultures to a final concentration of 20 mm before the onset of antibiotic biosynthesis (trophophase), tylosin production was severely suppressed while mycelial growth was stimulated. The activities of propionyl-coenzyme A carboxylase (EC 6.4.1.3) and methylmalonyl-coenzyme A carboxyltransferase (EC 2.1.3.1), enzymes involved in the synthesis of tylonolide precursors, were depressed in high ammonium cultures. The activity of macrocin 3′-o-methyltransferase, which catalyses the methylation of macrocin to form tylosin, was also affected by high concentrations of ammonium ions added in the trophophase.  相似文献   

17.
Aspartate kinase is a feedback-regulated enzyme that controls the first step common to the biosynthesis of lysine, threonine, isoleucine, and methionine in plants. Aspartate kinase was purified from Black Mexican Sweet maize (Zea mays L.) cell suspension cultures for physical and kinetic characterization studies. Partial purification and elution from an anion exchange column resolved two lysine-sensitive aspartate kinase isoforms. Both isoforms were purified >1,200-fold to a minimum specific activity of 18 units/milligram of protein. Both isoforms were sensitive to the lysine analogues S-2-aminoethyl-l-cysteine, l-lysine ethyl ester, and δ-hydroxylysine. No threonine-sensitive form of aspartate kinase was detected at any stage during the purification. Additional purification steps were combined with preparative gel electrophoresis to obtain apparently homogeneous lysine-sensitive aspartate kinase. Aspartate kinase appeared to be a tetramer with a holoenzyme molecular weight of 254,000 and to be composed of 49,000 and 60,000 subunits. The tetramer appeared to disassociate during native gel electrophoresis to 113,000 dalton species that retained aspartate kinase activity.  相似文献   

18.
An enzyme which catalyzes the transamination of L-aspartate with 2-oxoglutarate has been purified 400-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. An apparent relative molecular mass of 138,000 was estimated by gel filtration. The enzyme is a dimer consisting of two identical subunits of Mr 65,000 each as deduced from PAGE/SDS studies. A stoichiometry of two molecules pyridoxal 5-phosphate/enzyme molecule was calculated. The enzyme has an isoelectric point of 8.48 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-aspartate. L-Aspartate or pyridoxal 5-phosphate, but not 2-oxoglutarate, protected the enzyme from heat inactivation. The purified enzyme was able to transaminate, although to a low extent, L-phenylalanine and L-tyrosine with 2-oxoglutarate, and L-serine, L-alanine and L-glutamine with oxaloacetate. L-Aspartate aminotransferase exhibited hyperbolic kinetics for 2-oxoglutarate and oxaloacetate, and nonhyperbolic behaviour for L-aspartate and L-glutamate. Apparent Km values were 0.55 mM for 2-oxoglutarate, 0.044 mM for oxaloacetate, 2.53 mM for L-aspartate and 3.88 mM for L-glutamate. Transamination of L-aspartate in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

19.
Abstract The regulation of fatty acid composition by ammonium ions and amino acids was studied in Streptomyces fradiae , a tylosin producer. The quantity of branched-chain fatty acids in S. fradiae cells decreased significantly in cultures cultivated in a medium containing high concentrations of ammonium ions, in which the biosynthesis of tylosin was also strongly inhibited. Amino acids stimulating the tylosin production most pronouncedly, also substantially modified the composition of cell fatty acids.  相似文献   

20.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号