首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The volume fraction of autophagic vacuoles in liver parenchymal and exocrine pancreatic cells was smallest and the serum insulin level highest in the 24 hr prestarved mouse immediately after 3 hr feeding period. 2. The size of the autophagic vacuole and lysosome (dense body) compartments increased in both types of cells during 2-72 hr fasting parallel with decreasing serum insulin levels. 3. The protein content of the cells decreased and the DNA-based activity of acid phosphatase showed little change throughout fasting. The activity of cathepsin D increased during days 2 and 3 of food deprivation. 4. Vinblastine (50 mg/kg body wt) applied for the last 2 hr of different periods (2, 12, 24, 48 and 72 hr) of fasting decreased serum insulin level and increased the fractional cytoplasmic volume of autophagic vacuoles and dense bodies. This increase was smaller when the drug was applied shortly after feeding and much larger after prolonged fasting. The increase was more pronounced in the pancreatic than in the liver cells. 5. Our data show that the effect of vinblastine on the size of the autophagic-lysosomal compartment depends on the feeding status of the animals.  相似文献   

2.
Large numbers of autophagic vacuoles were found in murine pancreatic acinar and seminal vesicle epithelial cells following the administration of Triton X-100 or vinblastine for 4 h. The autophagic vacuoles disappeared rapidly from the cells after the administration of cycloheximide to animals pretreated with Triton X-100. The decay in seminal vesicle cells appeared to follow first-order kinetics with an estimated t1/2 of 8.7 min. The regression in pancreatic cells was equally rapid and less than half the initial volume of autophagic vacuoles was found at the 12th min after cycloheximide injection. This time, the decay curve appeared to be linear rather than exponential. Our data, together with the work of others, support the view that the average half-life of autophagic vacuoles is a fairly constant parameter kept within the range of 6-9 min in various types of mouse and rat cell when the late steps of autophagocytosis (i.e. the fusion of autophagosomes and lysosomes and the degradation within lysosomes) are not affected. The regression of autophagic vacuoles was slow in mice pretreated with vinblastine (t1/2 of about 27-30 min) suggesting that this drug slows down the turnover of autophagic vacuoles. Morphometric evaluation of the regression of the autophagic vacuole compartment after cycloheximide treatment can be used as a tool to distinguish between treatments which elevate the amount of autophagic vacuoles within the cells by increasing the rate of sequestration from those which expand the autophagic vacuole compartment by causing accumulation of autophagic vacuoles as a result of blockade of the late steps of the autophagic process.  相似文献   

3.
The mechanisms of enzyme delivery to and acidification of early autophagic vacuoles in cultured fibroblasts were elucidated by cryoimmunoelectron microscopic methods. The cation-independent mannose-6-phosphate receptor (MPR) was used as a marker of the pre-lysosomal compartment, and cathepsin L and an acidotropic amine (3-(2,4-dinitroanilino)-3'-amino-N-methyl-dipropylamine (DAMP), a cytochemical probe for low-pH organelles) as markers of both pre-lysosomal and lysosomal compartments. In addition, cationized ferritin was used as an endocytic marker. In ultrastructural double labeling experiments, the bulk of all the antigens was found in vesicles containing tightly packed membrane material. These vesicles also contained small amounts of endocytosed ferritin and probably correspond to the MPR-enriched pre-lysosomal compartment. Some immunolabeling was also visible in the trans-Golgi network. In addition, cathepsin L, DAMP, and large amounts of ferritin were found in smaller vesicles which can be classified as mature lysosomes. Early autophagic vacuoles were defined as vesicles containing recognizable cytoplasm. MPR, cathepsin L, and DAMP, but not ferritin, were detected in the early vacuoles. Inhibition of the acidification in the early vacuoles by monensin did not prevent the delivery of MPR and cathepsin L. The presence of MPR in the vacuoles suggests that cathepsin L is not delivered to early autophagic vacuoles solely by fusion with mature, MPR-deficient lysosomes. Furthermore, although lysosomes were loaded with endocytosed ferritin, it was not detected in autophagic vacuoles. Either the trans-Golgi network or the MPR-enriched pre-lysosomes may be the main source of enzymes and acidification machinery for the autophagic vacuoles in fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
大鼠睾丸间质细胞的自体吞噬活动   总被引:2,自引:0,他引:2  
本文结合超微结构和细胞化学观察,研究大鼠睾丸间质细胞(Leydig细胞)中溶酶体的结??构与功能。观察结果表明,大鼠睾丸间质细胞中高尔基体非常发达,在高尔基体的成熟面存在着CMP酶阳性反应的GERL系统,说明这种细胞有不断产生溶酶体的能力。细胞化学结果也证实在睾丸间质细胞有较多的初级和次级溶酶体。睾丸间质细胞不仅有较多的溶酶体,而且还有相当数量的自噬小体,存在着活跃的自体吞噬活动。自噬小体的界膜来源于特化的光面内质网或高尔基体膜囊,包围的内容物主要是光面内质网和少量线粒体。当自噬小体与溶酶体融合后即成为自体吞噬泡,由于酶的消化作用,自体吞噬泡内的细胞器有一系列形态变化。根据CMP酶细胞化学反应,可以区分自噬小体和自体吞噬泡,后者是一种次级溶酶体,呈CMP酶阳性反应。睾丸间质细胞是分泌雄性激素的内分泌细胞,其光面内质网和线粒体在类固醇激素分泌中起重要作用,自体吞噬活动的结果是去除部分内质网和线粒体,可能在细胞水平上起着对雄性激素分泌的调节作用。  相似文献   

5.
Oxidative phosphorylation system (OXPHOS) deficiencies are rare diseases but constitute the most frequent inborn errors of metabolism. We analyzed the autophagy route in 11 skin fibroblast cultures derived from patients with well characterized and distinct OXPHOS defects. Mitochondrial membrane potential determination revealed a tendency to decrease in 5 patients' cells but reached statistical significance only in 2 of them. The remaining cells showed either no change or a slight increase in this parameter. Colocalization analysis of mitochondria and autophagosomes failed to show evidence of increased selective elimination of mitochondria but revealed more intense autophagosome staining in patients' fibroblasts compared with controls. Despite the absence of increased mitophagy, Parkin recruitment to mitochondria was detected in both controls' and patients' cells and was slightly higher in cells harboring complex I defects. Western blot analysis of the autophagosome marker LC3B, confirmed significantly higher levels of the protein bound to autophagosomes, LC3B-II, in patients' cells, suggesting an increased bulk autophagy in OXPHOS defective fibroblasts. Inhibition of lysosomal proteases caused significant accumulation of LC3B-II in control cells, whereas in patients' cells this phenomenon was less pronounced. Electron microscopy studies showed higher content of late autophagic vacuoles and lysosomes in OXPHOS defective cells, accompanied by higher levels of the lysosomal marker LAMP-1. Our findings suggest that in OXPHOS deficient fibroblasts autophagic flux could be partially hampered leading to an accumulation of autophagic vacuoles and lysosomes.  相似文献   

6.
The postpartum involution of corpora lutea was examined by electron microscope cytochemistry of guinea pig ovaries previously fixed by vascular perfusion, a method which produces optimal preservation of steroid-secreting cells and yet maintains enzyme activity. The intracellular digestive apparatus was identified through the localization of two acid hydrolases, acid phosphatase (ACPase) and arylsulfatase. Other marker enzymes localized were thiamine pyrophosphatase (in Golgi cisternae) and alkaline phosphatase (along plasma membranes). Prolonged osmication was used to mark the outer Golgi cisterna. The results demonstrate that luteal cell regression is characterized by a striking increase in the number of lysosomes and the appearance of numerous, double-walled autophagic vacuoles. Both lysosomes and the space between the double walls of autophagic vacuoles exhibit ACPase and arylsulfatase activity. In contrast to earlier periods, just before and during regression, Golgi complex-endoplasmic reticulum-lysosomes (GERL) is markedly hypertrophied, displaying intense acid hydrolase activity. On the basis of various criteria, GERL is proposed to function in the formation of lysosomes and autophagic vacuoles. Lysosomes seem to develop from GERL as focal protuberances of varying size and shape, which detach from the parent structure. Double- walled autophagic vacuoles, often large and complex in structure, initially are produced as GERL cisternae envelop small areas of cytoplasm. Lytic enzymes, perhaps furnished by the engulfing membranes and trapped lysosomes, presumably bring about digestion of the contents of these vacuoles, producing first aggregate-type inclusions, then, as the contents are further degraded, myelin figure-filled residual bodies. ACPase activity occasionally appears within smooth endoplasmic reticulum tubules and cisternae in advanced regression, possibly suggesting that lytic enzymes utilize this membrane system as an access route to GERL. These data indicate that cellular autophagy is a prominent mechanism underlying luteal cell involution during normal postpartum degeneration of guinea pig corpora lutea. Furthermore they suggest that in regressing luteal cells GERL is responsible for packaging acid hydrolases into lytic bodies.  相似文献   

7.
Summary Morphologically detectable protein (intramembrane particles) and cholesterol (filipin labelling) in the membranes of autophagic vacuoles and lysosomes were studied in mouse hepatocytes using thin-section and freeze-fracture electron microscopy. Both isolated autophagic vacuoles and lysosomes, and intact tissue blocks were used due to the facts (i) that lysosomes are difficult to recognize in freeze-fracture replicas of intact hepatocytes, and (i) that filipin penetration into the tissue blocks is unsatisfactory. Intramembrane particle density was low in the membranes of early autophagic vacuoles (defined as round-shaped vacuoles in which an inner membrane parallel with the outer limiting membrane was clearly visible). The lysosomal membranes contained considerably more intramembrane particles. Particle-rich lysosomes or other vesicles were observed to fuse with the early autophagic vacuoles. The membranes of nascent autophagic vacuoles with morphologically intact contents were usually not labelled by filipin, whereas the membranes of all other autophagic vacuoles and lysosomes were heavily labelled. The increased cholesterol in the membranes of slightly older autophagic vacuoles is presumably derived from cholesterol-rich lysosomes or other vesicles fusing with the vacuoles and from the degrading organelles inside the autophagic vacuoles.  相似文献   

8.
Hepatocellular carcinomas were induced in rat liver by exposing the animals to diethylnitrosamine and 2-acetylaminofluorene in combination with partial hepatectomy. Light and electron microscopy demonstrated that the general appearance of the tumour tissue was that of highly differentiated malignant hepatocytic cells. Morphometrically there was a difference between normal and malignant cells in that the entire lysosomal apparatus was twice as large in malignant cells as in normal cells. This was mainly due to an increase in the fractional volume of autophagic vacuoles. A total lysosomal fraction (dense bodies and autophagic vacuoles) was isolated and characterized from both control and tumour livers. Marker enzyme analysis showed that the lysosomal enzyme activities were significantly lower in malignant liver tissue. Injection of leupeptin, an inhibitor of cathepsins B, H, and L, into rats did not increase the fractional volume of autophagic vacuoles in tumour tissue as much as in normal liver tissue. The proteolytic rate was lower in the lysosomal fraction from hepatoma cell tissue compared with the lysosomal fraction from normal cell tissue. This could conceivably be due to the lower activities of lysosomal enzymes. However, if the recovery of lysosomes is taken into account no clear-cut difference in lysosomal proteolysis between control and malignant liver tissue was noted. Accordingly, in malignant liver tissue a proteolytic balance is obtained characterized by an increased fractional volume of AVs and lower rate of protein degradation in individual lysosomes.  相似文献   

9.
For determination of the physiological role and mechanism of vacuolar proteolysis in the yeast Saccharomyces cerevisiae, mutant cells lacking proteinase A, B, and carboxypeptidase Y were transferred from a nutrient medium to a synthetic medium devoid of various nutrients and morphological changes of their vacuoles were investigated. After incubation for 1 h in nutrient-deficient media, a few spherical bodies appeared in the vacuoles and moved actively by Brownian movement. These bodies gradually increased in number and after 3 h they filled the vacuoles almost completely. During their accumulation, the volume of the vacuolar compartment also increased. Electron microscopic examination showed that these bodies were surrounded by a unit membrane which appeared thinner than any other intracellular membrane. The contents of the bodies were morphologically indistinguishable from the cytosol; these bodies contained cytoplasmic ribosomes, RER, mitochondria, lipid granules and glycogen granules, and the density of the cytoplasmic ribosomes in the bodies was almost the same as that of ribosomes in the cytosol. The diameter of the bodies ranged from 400 to 900 nm. Vacuoles that had accumulated these bodies were prepared by a modification of the method of Ohsumi and Anraku (Ohsumi, Y., and Y. Anraku. 1981. J. Biol. Chem. 256:2079-2082). The isolated vacuoles contained ribosomes and showed latent activity of the cytosolic enzyme glucose-6-phosphate dehydrogenase. These results suggest that these bodies sequestered the cytosol in the vacuoles. We named these spherical bodies "autophagic bodies." Accumulation of autophagic bodies in the vacuoles was induced not only by nitrogen starvation, but also by depletion of nutrients such as carbon and single amino acids that caused cessation of the cell cycle. Genetic analysis revealed that the accumulation of autophagic bodies in the vacuoles was the result of lack of the PRB1 product proteinase B, and disruption of the PRB1 gene confirmed this result. In the presence of PMSF, wild-type cells accumulated autophagic bodies in the vacuoles under nutrient-deficient conditions in the same manner as did multiple protease-deficient mutants or cells with a disrupted PRB1 gene. As the autophagic bodies disappeared rapidly after removal of PMSF from cultures of normal cells, they must be an intermediate in the normal autophagic process. This is the first report that nutrient-deficient conditions induce extensive autophagic degradation of cytosolic components in the vacuoles of yeast cells.  相似文献   

10.
The distributions of electric charges and Concanavalin A binding sites in autophagic vacuoles and lysosomes in mouse hepatocytes were studied by utilizing a frozen ultrathin section labeling method with cationized ferritin (CF) or anionized ferritin and ferritin-conjugated Concanavalin A (Con A-F) as visual probes. Our observations revealed that the inner surface of the autophagic vacuole membrane has more anionic sites (CF binding) than other organelle membranes. This suggests that if the limiting membranes of autophagic vacuoles originate from preexisting membranes, such membranes must undergo structural and compositional alternation during the formation of the autophagic vacuoles. In contrast to CF, Con A-F showed no distinct binding to the membranes of autophagic vacuoles, but the contents of vacuoles displayed varying Con A-F binding, depending on the stage of the autophagic process. Increased binding was seen in more mature autophagic vacuoles. Since lysosomes showed a preferential accumulation of Con A-F particles, molecules with Con A-F binding sites in autophagic vacuoles may be of lysosomal origin. Con A-F distribution varied from lysosome to lysosome in the same cell, indicating heterogeneity of lysosomal contents. These results suggest that ferritin-conjugated lectin labeling methods applied to frozen, ultrathin section are a useful new approach in analyzing the natural history of autophagic vacuoles and the heterogeneity of lysosomes.  相似文献   

11.
SYNOPSIS. Young organisms of Tokophrya infusionum starved for several hr, are best suited for a study of the fine structure of this organism including the distribution of its organelles. Acid phosphatase was localized by a combined electron microscopy and cytochemical approach using modified Gomori methods. The enzyme was found in small dense bodies, spheroid vesicles, missile-like bodies, rough-surfaced endoplasmic reticulum, residue and autophagic vacuoles. The small dense bodies are thought to be primary lysosomes since electron micrographs show a) a continuity between the membrane of the rough-surfaced endoplasmic reticulum and that of the dense bodies and b) a connection between the contents of both structures when the dense bodies form from the endoplasmic reticulum.  相似文献   

12.
The microtubule inhibitor vinblastine (25 mg/kg, i.p.) induces autophagocytosis in mouse hepatocytes. The formation of autophagic vacuoles, their contents, and other cellular changes after vinblastine injection in hepatocytes, were studied by light and electron microscopic morphometric analysis. The volume density of autophagic vacuoles increased significantly during the experimental period (24 h). This increase was due to the significant increase in their number, which was approximately 5-fold 4 h, 12 h and 24 h after vinblastine injection. The mean volume of the autophagic vacuoles increased significantly 1 h after vinblastine injection, at which time the formation of new autophagic vacuoles was at its greatest. There was an accumulation of single membrane-limited, obviously older autophagic vacuoles in the cytoplasm. Their volume density was at its maximum 12 h after injection, suggesting a retarded turnover of autophagic vacuoles. The segregation of cytoplasmic components into autophagic vacuoles may not be selective after vinblastine injection. The injurious effects of vinblastine were evident both in light and electron microscopic studies. In the parenchymal cells the Golgi cisternae were dilated and disorganized and the volume density of the Golgi apparatus was significantly decreased 12 h after vinblastine injection. The volume density of lysosomes was increased during the 12 h after vinblastine injection. Vesicles containing very low density lipoprotein particles accumulated in the cytoplasm so that their volume density was significantly increased during the entire experimental period. Vinblastine apparently interfered with the transport and secretion of the very low density lipoproteins from the parenchymal cells.  相似文献   

13.
Treatment of mice with both leupeptin (0.06 mg/g body wt) and vinblastine (0.05 mg/g body wt) for 2 h caused a many-fold enlargement of the autophagic-lysosomal compartment of pancreatic acinar, seminal vesicle epithelial, and liver parenchymal cells. In all three types of cells a predominance of large, dense bodies was seen after leupeptin treatment and that of typical autophagic vacuoles were seen after vinblastine treatment. An exponential decrease of the volume fraction of autophagic vacuoles was observed in leupeptin-treated cells after the administration of cycloheximide (0.2 mg/g body wt). The half-life of autophagic vacuoles estimated from the decay curve was 5.3, 5.7, and 6.6 min for pancreatic, seminal vesicle, and liver cells, respectively. Our data suggest that sequestered cytoplasmic material rapidly enters the lysosomes in leupeptin-treated cells and accumulates in this compartment. In contrast, no regression of the autophagic vacuole compartment of pancreatic and seminal vesicle cells was observed after the administration of cycloheximide to animals pretreated with vinblastine, and only a slight decrease was seen in liver cells. These observations show that the lifetime of autophagic vacuoles is prolonged by vinblastine resulting in their accumulation in the cells. However, our measurements also lend support to the view that in addition to the accumulatory effect on undegraded cytoplasmic material, stimulation of sequestration may play a role in the enlargement of the autophagic lysosomal compartment after treatment with leupeptin as well as with vinblastine in all three types of cells investigated.  相似文献   

14.
Presenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain (Annaert, W.G., C. Esselens, V. Baert, C. Boeve, G. Snellings, P. Cupers, K. Craessaerts, and B. De Strooper. 2001. Neuron. 32:579-589). Here, we demonstrate that TLN is not a substrate for gamma-secretase cleavage, but displays a prolonged half-life in PS1(-/-) hippocampal neurons. TLN accumulates in intracellular structures bearing characteristics of autophagic vacuoles including the presence of Apg12p and LC3. Importantly, the TLN accumulations are suppressed by adenoviral expression of wild-type, FAD-linked and D257A mutant PS1, indicating that this phenotype is independent from gamma-secretase activity. Cathepsin D deficiency also results in the localization of TLN to autophagic vacuoles. TLN mediates the uptake of microbeads concomitant with actin and PIP2 recruitment, indicating a phagocytic origin of TLN accumulations. Absence of endosomal/lysosomal proteins suggests that the TLN-positive vacuoles fail to fuse with endosomes/lysosomes, preventing their acidification and further degradation. Collectively, PS1 deficiency affects in a gamma-secretase-independent fashion the turnover of TLN through autophagic vacuoles, most likely by an impaired capability to fuse with lysosomes.  相似文献   

15.
The role of the Golgi complex in the isolation and digestion of organelles   总被引:1,自引:0,他引:1  
The origin of the membranes and lytic enzymes involved in autophagy has been studied in metamorphosing insect fat body.The Golgi complex has two functions in the organelle destruction which takes place when fat body cells change their activities. (1) It gives rise to envelopes which externalize organelles scheduled for destruction. Microbodies, mitochondria and rough endoplasmic reticulum are sequentially removed from the cytoplasm by investment in isolation membranes. During the isolating phase, isolation membranes have the same osmiophilia as the outer saccular and microvesicular components of the Golgi complex, they do not contain lytic enzymes and they are specific in their adhesion to organelles scheduled for destruction. (2) The Golgi complex gives rise to lytic enzymes. Primary lysosomes which contain acid phosphatase fuse with the isolation bodies formed from invested organelles to become autophagic vacuoles. During this lytic phase, acid phosphatase is present in the inner saccules and microvesicular components of the Golgi complex, in the primary lysosomes seen fusing with isolation bodies and in autophagic vacuoles.  相似文献   

16.
Mouse macrophages exposed to 30 µg/ml of chloroquine in vitro develop autophagic vacuoles containing various cytoplasmic components and acid phosphatase. The early toxic vacuoles appear in the perinuclear region within 15 min; on electron microscopy, they show irregular shape, amorphous moderately dense content, apparent double membranes, and in some instances curved thin tubular extensions with a central, dark linear element. Cytoplasmic structures are probably transported into the vacuoles by invagination of the vacuolar membrane. After exposure to chloroquine for 1–4 hr, macrophages display large vacuoles containing degraded cytoplasmic structures, membranous whorls, and amorphous material. When chloroquine is removed by changing the culture medium after 4 hr, the cells survive and 24 hr later they exhibit no abnormality except for large cytoplasmic dense bodies packed with membrane lamellae. During recovery chloroquine disappears from the cells. 24 hr after exposure to chloroquine the macrophages have accumulated less hydrolases than control cells.  相似文献   

17.
18.
Characterization of the proteolytic compartment in rat hepatocyte nodules   总被引:1,自引:0,他引:1  
Persistent liver nodules (hepatocyte nodules, neoplastic nodules) were produced in rat liver by intermittent feeding with 2-acetylaminofluorene. Dense bodies (secondary lysosomes) were purified and characterized from the nodules. The purity of the dense body fraction was 90%. The levels of various lysosomal enzyme activities were lower in these dense bodies in comparison with dense bodies from control liver. Similarly, protein degradation was 50% lower in dense bodies from liver nodules than in control liver. The number of autophagic vacuoles (AVs) in the nodular tissue increased considerably after 3 h vinblastine treatment. We have taken advantage of this expansion in an effort to isolate these organelles from liver nodules. Autophagic vacuoles have been isolated recently from liver and kidney but not from putatively premalignant liver nodules. Fraction purity of AVs from liver nodules was 95%. As with dense bodies, AVs from nodular tissue displayed lower activities of proteinases and lower rates of protein degradation when compared with their counterparts from normal liver tissue. Accordingly, the lower rate of overall protein degradation in liver nodules can be ascribed to a decrease in lysosomal activity. A diminished autophagic sequestration capacity is the most plausible explanation for the decreased rate of proteolysis in cells. This could conceivably give these nodular cells a growth advantage and assist in their selective outgrowth as well as in their transformation from neoplastic into true cancer cells.  相似文献   

19.
Data presented in the accompanying paper suggests nascent autophagic vacuoles are formed from RER (Dunn, W. A. 1990. J. Cell Biol. 110:1923-1933). In the present report, the maturation of newly formed or nascent autophagic vacuoles into degradative vacuoles was examined using morphological and biochemical methods combined with immunological probes. Within 15 min of formation, autophagic vacuoles acquired acid hydrolases and lysosomal membrane proteins, thus becoming degradative vacuoles. A previously undescribed type of autophagic vacuole was also identified having characteristics of both nascent and degradative vacuoles, but was different from lysosomes. This intermediate compartment contained only small amounts of cathepsin L in comparison to lysosomes and was bound by a double membrane, typical of nascent vacuoles. However, unlike nascent vacuoles vet comparable to degradative vacuoles, these vacuoles were acidic and contained the lysosomal membrane protein, lgp120, at the outer limiting membrane. The results were consistent with the stepwise acquisition of lysosomal membrane proteins and hydrolases. The presence of mannose-6-phosphate receptor in autophagic vacuoles suggested a possible role of this receptor in the delivery of newly synthesized hydrolases from the Golgi apparatus. However, tunicamycin had no significant effect on the amount of mature acid hydrolases present in a preparation of autophagic vacuoles isolated from a metrizamide gradient. Combined, the results suggested nascent autophagic vacuoles mature into degradative vacuoles in a stepwise fashion: (a) acquisition of lysosomal membrane proteins by fusing with a vesicle deficient in hydrolytic enzymes (e.g., prelysosome); (b) vacuole acidification; and (c) acquisition of hydrolases by fusing with preexisting lysosomes or Golgi apparatus-derived vesicles.  相似文献   

20.
Cadmium chloride (CdCl2) (0.1 or 1.0%) was given in the drinking water to pregnant rabbits on Days 0 to 5 of gestation. Electron microscopy of the blastocysts revealed significant changes in the lysosomes (e.g. autophagic vacuoles and residual bodies) of endodermal cells as well as those of the inner cell mass. No such changes were evident in the trophoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号