首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.  相似文献   

2.
A series of novel 2-pyridin-2-yl-1H-indole derivatives (4a-f) was prepared by intramolecular cyclodehydration of alpha-anilinyl (or 3-anisidyl)-2-pyridin-2-yl-ethanones (2a-f) and their optical spectroscopy and estrogen receptor (ER) binding properties were studied. These compounds showed long wavelength fluorescent emission, which is sensitive to solvent polarity and pH, while indol-6-ols 4b, e, and f displayed reasonably good binding affinities to ER.  相似文献   

3.
Summary. NPS Pharmaceuticals, Inc. (NPS) has synthesized a series of open-channel blockers with varying potencies at the NMDA receptor. NPS 1506 (Fig. 1) is a moderate affinity antagonist that inhibits NMDA/glycine-induced increases in cytosolic calcium in cultured rat cerebellar granule cells (IC50 = 476 nM) and displaces the binding of [3H]MK-801 to rat cortical membranes (IC50 = 664 nM). Received August 31, 1999 Accepted September 20, 1999  相似文献   

4.
5.
The most prevalent single-nucleotide polymorphism (SNP) A118G in the human mu-opioid receptor gene predicts an amino acid change from an asparagine residue to an aspartatic residue in amino acid position 40. This N40D mutation, which has been implicated in the development of opioid addiction, was previously reported to result in an increased beta-endorphin binding affinity and a decreased potency of morphine-6-glucuronide. Therefore, in the present study we have investigated whether this mutation might affect the binding affinity, potency, and/or the agonist-induced desensitization, internalization and resensitization of the human mu-opioid receptor stably expressed in human embryonic kidney 293 cells. With the exception of a reduced expression level of N40D compared to human mu-opioid receptor (hMOR) in HEK293 cells, our analyses revealed no marked functional differences between N40D and wild-type receptor. Morphine, morphine-6-glucuronide and beta-endorphin revealed similar binding affinities and potencies for both receptors. Both the N40D-variant receptor and hMOR exhibited robust receptor internalization in the presence of the opioid peptide [d-Ala(2),N-MePhe(4),Glyol(5)]enkephalin (DAMGO) and beta-endorphin but not in response to morphine or morphine-6-glucuronide. After prolonged treatment with morphine, morphine-6-glucuronide or beta-endorphin both receptors showed similiar desensitization time courses. In addition, the receptor resensitization rates were nearly identical for both receptor types.  相似文献   

6.
7.
Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.  相似文献   

8.
Using the Xiphophorus fish melanoma model, we show a strong male bias for sunlight‐induced malignant melanoma, consistent with that seen in the human population. To examine underlying factors, we exposed adult X. couchianus fish to a single, sublethal dose of UVB and measured circulating sex steroid hormones and expression of associated hormone receptor genes over a 24‐h period. We found that a single exposure had profound effects on circulating levels of steroid hormones with significant decreases for all free sex steroids at 6 and 24 h and increases in conjugated 2‐estradiol and 11‐ketotestosterone at 6 and 24 h, respectively. Whereas ARα expression increased in male and female skin, neither ARβ nor either of the ERs showed significant responses to UVB in either sex. The rapid response of male androgens and their receptors in the skin after UVB irradiation implicates hormones in the male bias of skin cancer and suggests that the photoendocrine response immediately after UV exposure may be relevant to melanomagenesis.  相似文献   

9.
We describe the use of four complementary biosensors (Biacore 3000, Octet QK, ProteOn XPR36, and KinExA 3000) in characterizing the kinetics of human nerve growth factor (NGF) binding to a humanized NGF-neutralizing monoclonal antibody (tanezumab, formerly known as RN624). Tanezumab is a clinical candidate as a therapy for chronic pain. Our measurements were consistent with the NGF/tanezumab binding affinity being tighter than 10 pM due to the formation of an extremely stable complex that had an estimated half-life exceeding 100 h, which was beyond the resolution of any of our methods. The system was particularly challenging to study because NGF is an obligate homodimer, and we describe various assay orientations and immobilization methods that were used to minimize avidity in our experiments while keeping NGF in as native a state as possible. We also explored the interactions of NGF with its natural receptors, TrkA and P75, and how tanezumab blocks them. The Biacore blocking assay that we designed was used to quantify the potency of tanezumab and is more precise and reproducible than the currently available cell-based functional assays.  相似文献   

10.
αβ T-cell receptors (TCRs) recognize multiple antigenic peptides bound and presented by major histocompatibility complex molecules. TCR cross-reactivity has been attributed in part to the flexibility of TCR complementarity-determining region (CDR) loops, yet there have been limited direct studies of loop dynamics to determine the extent of its role. Here we studied the flexibility of the binding loops of the αβ TCR A6 using crystallographic, spectroscopic, and computational methods. A significant role for flexibility in binding and cross-reactivity was indicated only for the CDR3α and CDR3β hypervariable loops. Examination of the energy landscapes of these two loops indicated that CDR3β possesses a broad, smooth energy landscape, leading to rapid sampling in the free TCR of a range of conformations compatible with different ligands. The landscape for CDR3α is more rugged, resulting in more limited conformational sampling that leads to specificity for a reduced set of peptides as well as the major histocompatibility complex protein. In addition to informing on the mechanisms of cross-reactivity and specificity, the energy landscapes of the two loops indicate a complex mechanism for TCR binding, incorporating elements of both conformational selection and induced fit in a manner that blends features of popular models for TCR recognition.  相似文献   

11.
The synthesis of a high affinity mannose receptor ligand, appropriately functionalized for chemoselective ligation with an antigen or DNA-binding moieties is described. By a combination of solid- and solution-phase chemistry a versatile synthesis of the target structure was accomplished. Examples of subsequent ligation reactions are described.  相似文献   

12.
Correlation between the glucocorticoid receptor (GR) number and affinity for the ligand, as well as the relationship between these equilibrium binding parameters and body mass index, blood pressure, and age were examined in peripheral blood mononuclear cells (PBMC) of healthy human subjects. It was found that the only statistically significant correlation was that between the GR number per cell and equilibrium dissociation constant, K(d) (r = 0.84, p < 0.0001). This observation implies the existence of a compensatory mechanism providing for lower GR affinity in individuals that have more receptor sites in circulating mononuclear cells and vice versa. This compensatory phenomenon together with considerable interindividual variation (GR number per cell ranging from 1391 to 15133, CV = 58.62%; and K(d) from 2.5 to 98.6 nM, CV = 80.87%), reflects plasticity of the glucocorticoid system. The results pose the question of whether this compensatory mechanism observed in healthy human subjects persists in pathophysiological states associated with glucocorticoid hormone actions and suggest that tissue sensitivity to glucocorticoids could be better predicted by the sign and magnitude of the correlation between the two receptor equilibrium binding parameters than by each of them separately.  相似文献   

13.
14.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

15.
Comparative modeling of the vitamin D receptor three-dimensional structure and computational docking of 1alpha,25-dihydroxyvitamin D(3) into the putative binding pocket of the two deletion mutant receptors: (207-423) and (120-422, Delta [164-207]) are reported and evaluated in the context of extensive mutagenic analysis and crystal structure of holo hVDR deletion protein published recently. The obtained molecular model agrees well with the experimentally determined structure. Six different conformers of 1alpha,25-dihydroxyvitamin D(3) were used to study flexible docking to the receptor. On the basis of values of conformational energy of various complexes and their consistency with functional activity, it appears that 1alpha,25-dihydroxyvitamin D(3) binds the receptor in its 6-s-trans form. The two lowest energy complexes obtained from docking the hormone into the deletion protein (207-423) differ in conformation of ring A and orientation of the ligand molecule in the VDR pocket. 1alpha,25-Dihydroxyvitamin D(3) possessing the A-ring conformation with axially oriented 1alpha-hydroxy group binds receptor with its 25-hydroxy substituent oriented toward the center of the receptor cavity, whereas ligand possessing equatorial conformation of 1alpha-hydroxy enters the pocket with A ring directed inward. The latter conformation and orientation of the ligand is consistent with the crystal structure of hVDR deletion mutant (118-425, Delta [165-215]). The lattice model of rVDR (120-422, Delta [164-207]) shows excellent agreement with the crystal structure of the hVDR mutant. The complex obtained from docking the hormone into the receptor has lower energy than complexes for which homology modeling was used. Thus, a simple model of vitamin D receptor with the first two helices deleted can be potentially useful for designing a general structure of ligand, whereas the advanced lattice model is suitable for examining binding sites in the pocket.  相似文献   

16.
Allan GF  Palmer E  Musto A  Lai MT  Clancy J  Palmer S 《Steroids》2006,71(7):578-584
Progesterone receptor modulators have diverse potential therapeutic uses, including the treatment of endometriosis, uterine fibroids and breast cancer. Here we describe the molecular properties and preclinical pharmacology of a new steroidal progestin antagonist, JNJ-1250132. The compound is a high affinity ligand for the progesterone receptor, possessing cross-reactivity with other steroid receptors comparable to that of steroidal antagonists such as mifepristone. It inhibits progestin-inducible alkaline phosphatase gene expression in T47D human breast cancer cells, and also inhibits their in vitro proliferation. It inhibits gestation in rats and progesterone-dependent endometrial transformation in rabbits with efficacies comparable to mifepristone. Like mifepristone, it is a glucocorticoid antagonist in vivo. In cell-free DNA binding assays, the compound inhibits binding of the human progesterone receptor to a progesterone response element, and thus is similar to onapristone in this regard. In contrast, as judged by proteolytic analysis, JNJ-1250132 induces a receptor conformation more similar to that induced by mifepristone, which promotes receptor binding to DNA. Therefore, JNJ-1250132 has unique effects on the progesterone receptor that may translate into a novel clinical profile.  相似文献   

17.
The glutamate receptor system is implicated in the development and maintenance of epileptic seizures and it has been reported that compounds showing high affinity for both AMPA and KA binding sites are more potent anticonvulsants than compounds having selective affinity toward AMPA or KA receptor. These outcomes make such inhibitors future potential antiepileptic drugs. So, the pair wise binding affinity for AMPA and KA receptors inhibition was proposed by using the addition between biological activities of ligands. This approach for evaluation of pair wise binding affinity was exemplified using set of triazolo [1,5-a] quinoxaline for AMPA and KA receptors. The biological activity towards AMPA and KA receptors (expressed as -log IC5O) was taken as a dependent variable for building CoMFA and CoMSIA models. The resulting models show the ways of increasing binding affinity to both AMPA and KA receptors as potential target for epilepsy. The statistically significant results show that pair wise CoMFA and CoMSIA models are better then individual models. The resulting cross-validated r2CV value 0.806 for CoMFA is greater then 0.780 for CoMSIA pair wise model. The non-cross validated run giving a coefficient of determination r2 value of 0.946 and 0.908 for CoMFA and CoMSIA respectively, provided a good correlation between the observed and computed affinities of the compounds.  相似文献   

18.
19.
The cholinergic projections from basal forebrain nuclei to the retrosplenial cortex (RSC) have previously been studied using a variety of histological approaches. Studies using acetylcholinesterase (AChE) histochemistry and choline acetyltransferase (ChAT) immunocytochemistry have demonstrated that this projection travels via the cingulum on route to the RSC. Preliminary studies from our laboratory, however, have shown that the fornix may also be involved in this projection. The present study uses the combination of pathway lesions, and the analysis of cholinergic neurochemical markers in the RSC to determine the role of the fornix in the cholinergic projection to the RSC. High affinity choline uptake (HACU) and ChAT activity were measured in the RSC of control rats, animals with cingulate lesions, and animals with fornix plus cingulate lesions. Fornix plus cingulate lesions resulted in significant deceases in HACU and ChAT activity in comparison to cingulate lesions alone. Muscarinic receptor binding was also evaluated in combination with the various lesions, and a significant increase in retrosplenial receptor binding was noted following fornix lesions. Together, these results support the concept of a fornix-mediated cholinergic pathway to the RSC.  相似文献   

20.
In this study, capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) induced an increase in the cell viability of the androgen-responsive prostate cancer LNCaP cells, which was reversed by the use of the TRPV1 antagonists capsazepine, I-RTX and SB 366791. In further studies we observed that capsaicin induced a decrease in ceramide levels as well as Akt and Erk activation. To investigate the mechanism of capsaicin action we measured androgen (AR) receptor levels. Capsaicin induced an increase in the AR expression that was reverted by the three TRPV1 antagonists. AR silencing by the use of siRNA, as well as blocking the AR receptor with bicalutamide, inhibited the proliferative effect of capsaicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号