首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete 1H nuclear magnetic resonance assignments have been made for the common mono-, di-, and trihydroxy 5 beta-cholanoic acids; lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, cholic acid, and the unsubstituted parent compound, 5 beta-cholanoic acid, by heteronuclear-correlated two-dimensional NMR. The known 13C chemical shifts of these compounds were used to make the proton resonance assignments, and consistency of the carbon and proton assignments was verified by expected changes due to substituent effects. This has led to clarification of previously published 13C NMR resonance assignments. Addition of the 3 alpha, 7 alpha, and 12 alpha hydroxyl substituent effects derived from the mono- and dihydroxycholanoic acids yielded predicted values for proton chemical shifts of the trihydroxy-substituted 5 beta-cholanoic acid, cholic acid, that agreed well with experimental values. It is suggested that the individual substituent effects can be used to predict proton chemical shifts for hydroxycholanic acids containing other combinations of 3 alpha, 7 alpha, 7 beta, and 12 alpha hydroxyl groups.  相似文献   

2.
Incorporation of 18O in cholic anc chenodeoxycholic acid was determined after inhalation of 18O2 by rats with biliary fistula. After a 30-min inhalation, the maximal incorporation of 18O in the three hydroxyl groups of cholic acid was about 1.8 atoms, and in the two hydroxyl groups of chenodeoxycholic acid about 1.1 atoms. About 0.4 atom of 18O in the cholic and chenodeoxycholic acid isolated was present at C-3. It was calculated that at least 50% of the biosynthesized bile acids were derived from newly synthesized cholesterol. The time course for the incorporation of 18O at C-3 of chenodeoxycholic acid was slightly different from that of cholic acid, indicating that a small part of chenodeoxycholic acid might have been synthesized from a pool of cholesterol different from that utilized in the biosynthesis of cholic acid. Incorporation of 18O in biliary cholesterol was less than 0.05 atom, indicating that the major part of this cholesterol is derived from a pool different from that utilized in bile acid biosynthesis.  相似文献   

3.
Tuma J  Richert C 《Biochemistry》2003,42(30):8957-8965
The three-dimensional structure of a covalent hybrid between cholic acid and the self-complementary DNA hexamer 5'-TGCGCA-3' was solved via two-dimensional NMR and restrained torsion angle molecular dynamics. In the complex, refined to a pairwise rmsd of 0.64 A, the steroid binds to the terminal T:A base pairs via extensive van der Waals contacts but without any hydrogen bonds or detectable dipole-dipole interactions. The contacts involve the methyl groups as well as one edge of the streoid's sterane skeleton and both nucleobases and the deoxyriboses of the terminal base pair of the DNA. The surprising shape complementarity between steroid and the undisturbed DNA termini explains the increase in fidelity and affinity observed for hybridization probes bearing bile acid residues. Since the hydroxyl groups of the steroid do not contribute to the binding of the DNA, they may be derivatized, potentially giving access to a new class of specific binders for blunt ends of Watson-Crick duplexes.  相似文献   

4.
The possibility that the 12 alpha-hydroxylase involved in formation of bile acids is of regulatory importance for the ratio between cholic acid and chenodeoxycholic acid in bile was studied with an in vivo technique. [4-14C]7 alpha-Hydroxy-4-cholesten-3-one and [6 beta-3H]7 alpha, 12 alpha-dihydroxy-4-cholesten-3-one were synthesized, and a mixture of these two bile acid intermediates was administered intravenously in five healthy subjects and in one patient with severe liver cirrhosis. The patient with liver cirrhosis was included in the study because of a considerable reduction in biosynthesis of cholic acid. Since the [4-14C]-labeled steroid is an intermediate just proximal to and since the [6 beta-3H]-labeled steroid is an intermediate just distal to the 12 alpha-hydroxylase step, the 3H/14C ratio in the cholic acid formed should reflect the relative 12 alpha-hydroxylase activity. The 3H/14C ratio varied between 1.8 and 3.9 in the cholic acid isolated from the healthy subjects and was 3.6 in the cholic acid isolated from the patient with liver cirrhosis. The ratio between cholic acid and chenodeoxycholic acid varied between 0.6 and 3.9 in the bile from the control subjects and was only 0.4 in the bile from patients with liver cirrhosis. There was no correlation between the 3H/14C ratios and the ratios between cholic acid and chenodeoxycholic acid in bile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.  相似文献   

6.
Three approaches to the synthesis of ursodeoxycholic acid (UDC) from cholic acid have been investigated: (i) oxidation of cholic acid to 3α,7α-dihydroxy-12 keto-5β-cholanoic acid (12K-CDC) with Clostridium group P 12α-hydroxysteroid dehydrogenase (HSDH), isomerization of 12K-CDC to 3α, 7β-dihydroxy-12 keto-5β-cholanoic acid (12K-UDC) with Clostridium absonum 7α- and 7β-HSDH and reduction of 12K-UDC by Wolff-Kishner to UDC; (ii) isomerization of cholic acid to ursocholic acid (UC) by C. absonum 7α- and 7β-HSDH, oxidation of UC to 12K-UDC with Clostridium group P 12α-HSDH and Wolff-Kishner reduction of 12K-UDC to UDC; (iii) oxidation of cholic acid to 12K-CDC by Clostridium group P 12α-HSDH, Wolff-Kishner reduction of 12K-CDC to chenodeoxycholic acid (CDC) and isomerization of CDC to UDC using whole cell cultures of C. absonum. In the first two approaches (using cell free systems) the yields of desired product were relatively low primarily due to the formation of various side products. The third method proved the most successful giving an overall yield of 37% (UDC) whose structure was verified by mass spectroscopy of the methyl ester.  相似文献   

7.
In the course of a study on the details of the biosynthesis of cholic acid from cholesterol, 5β-[26,27-14C]cholestan-3α,7α,12α,24S,25-pentol, an intermediate in the 25-hydroxylation pathway of cholic acid, was incubated for 2 min with the cytosolic fraction of rat liver homogenate in the presence of NAD. A precursor to cholic acid which appeared to be a ketone was isolate from the reaction mixture by thin-layer chromatography. This material proved to be of inadequate volatility for electron impact mass spectrometry and was therefore studied, without further purification, by techniques of chemical ionization mass spectrometry using ammonia as the reagent gas. The spectrum was rerecorded using argon mixed with ammonia to induce additional fragmentation. One of these fragments corresponded to a McLafferty rearrangement of a 24-keto-25-hydroxycholestane derivative. To obtain additional evidence for this structure the following sequence of reactions was conducted on about 20 μg of the intermediate: (1) periodic acid oxidation, (2) diazomethane treatment, and (3) chromic acid oxidation. The change in molecular weight after each reaction agreed with the presence of a 25-hydroxy-24-keto side chain and three secondary hydroxyl groups in the molecule. Therefore, it could be deduced that the intermediate was 3α,7α,12α,25-tetrahydroxy-5β-cholestan-24-one. This work demonstrates that chemical ionization-mass spectrometic techniques can be a labor-saving alternative to other methods of structure determination and that 3α,7α,12α,25-tetrahydroxy-5β-cholestan-24-one is probably an intermediate in the 25-hydroxylation pathway of cholic acid from cholesterol.  相似文献   

8.
9.
This paper describes three simple and short methods for the conversion of cholic acid into cholylaldehyde with protected hydroxyl groups. The first method involves lithium aluminum hydride reduction of the tetrahydropyranyl ether of methyl cholate and oxidation of the resulting primary alcohol with pyridinium chlorochromate. The second method employs diborane for the reduction of the -COOH group to the -CH2OH group, while the third method involves the reduction of 3α, 7α, 12α -triformyloxy-5β -cholan-24-oic acid (as the acid chloride) directly into 3α, 7α, 12α -triformyloxy-5β -cholan-24-al with TMA-ferride (tetramethylammonium hydridoirontetracarbonyl). The aldehyde obtained by any of the above methods underwent smooth Reformatsky reaction with ethyl α -bromopropionate to yield 3α, 7α, 12α, 24ξ -tetrahydroxy-5β -cholestan-26-oic acid.  相似文献   

10.
A recently isolated hitherto unknown Clostridium from human feces, designated Clostridium "scindens" (formerly strain 19), synthesizes at least two enzymes active on the side-chain of the steroid molecule and two enzymes active on the hydroxyl groups of the 7-position of bile acids. Steroid desmolase, responsible for side-chain cleavage of corticoids, and 20 alpha-hydroxysteroid dehydrogenase have not been detected in any other bacterial species of the resident colonic flora. Steroid desmolase is Eh-dependent (optimum ca. -130 mV), requires a hydroxy group at C-17, and preferably an alpha-ketol group in the side-chain; an alpha-hydroxy group at C-20 reduces and a beta-hydroxy group at C-20 prevents side-chain cleavage. With suitable substrates, the yield of C-19 steroids is proportional to the bacterial multiplication rate. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSDH) is also Eh-dependent (optimum ca. -300 mV) and reduces the C-20 keto function to an alpha-hydroxy group, regardless of the presence or absence of a hydroxy group at C-17. 7 alpha-Dehydroxylase metabolizes cholic and chenodeoxycholic acid, while 7 beta-hydroxysteroid dehydrogenase acts upon ursodeoxycholic acid. The latter two enzymes are not specific for C. scindens.  相似文献   

11.
The metabolism of cholic acid by Arthrobacter simplex was investigated. This organism effected both ring a cleavage and elimination of the hydroxyl groups at C-7 and C-12 and gave a new metabolite, (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid, which was isolated and identified through its partial synthesis. A degradative pathway of cholic acid into this metabolite is tentatively proposed, and the possibility that the proposed pathway could be extended to the cholic acid degradation by other microorganisms besides A. simplex is discussed. The possibility that the observed reactions in vitro could occur during the metabolism of bile acids in vivo is considered.  相似文献   

12.
We have prepared a novel metal-chelate adsorbent utilizing N-methacryloyl-L-histidine methyl ester (MAH) as a metal-chelating ligand. MAH was synthesized by using methacryloyl chloride and l-histidine methyl ester dihydrochloride. Spherical beads with an average diameter of 75-125 microm were produced by suspension polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAH carried out in an aqueous dispersion medium. Then, Cu(2+) ions were chelated directly on the chelating beads. Cu(2+)-chelated beads were used in the adsorption of cytochrome c (cyt c) from aqueous solutions. The maximum cyt c adsorption capacity of the Cu(2+)-chelated beads (658.2 micromol/g Cu(2+) loading) was found to be 31.7 mg/g at pH 10 in phosphate buffer. The nonspecific cyt c adsorption on the naked PHEMA beads was 0.2 mg/g. Cyt c adsorption increased with increasing Cu(2+) loading. Cyt c adsorption capacity was demonstrated for the buffer types with the effects in the order phosphate > HEPES > MOPS > MES > Tris-HCl. Cyt c molecules could be adsorbed and desorbed five times with these adsorbents without noticeable loss in their cyt c adsorption capacity.  相似文献   

13.
This study presents a methodology for covalent attachment of hydrophobic peptidic ligands to hydrophilic chromatographic matrices with improved coupling efficiency. Preconcentration was introduced through the use of polyethylene glycol (PEG)-based crosslinkers. Immobilization of model hydrophobic peptide pep12 (ITLISSEGYVSS) to hydrophilic silica-amine matrix was investigated in the absence/presence of PEG-based linker. The effect of linker densities 14.2, 27.6, and 56.4 μmol/g beads on coupling efficiency was investigated. Whereas a ligand coupling efficiency of 67% was obtained in the absence of the linker, incorporating PEG-based linker at low densities allowed a 30% increase in the coupling efficiency. Although the heterobifunctional crosslinker, maleimide-PEG-NHS (N-hydroxysuccinimide) ester, can be used to couple thiol-bearing ligands to amine-functionalized matrices, no method is available for quenching free amine moieties on the matrix after ligand immobilization. The efficacy of acylating agents, acetyl chloride and oxalyl chloride, in blocking free amine groups when immobilizing the model peptide pep14 (CITLISSEGYVSSK) to silica-amine matrix using maleimide-PEG-NHS ester crosslinker was investigated. Because oxalyl chloride was nonreactive to maleimides, it allowed successful coupling of pep14 to the maleimide termini of the linkers. Adsorption studies between pep14-immobilized microspheres and human immunoglobulin M (hIgM) suggested retention of ligand activity and a 95% decrease in nonspecific binding of proteins to the matrix.  相似文献   

14.
The addition of cholic acid to growing cultures of Eubacterium species V.P.I. 12708 caused a 25 and 46-fold increase in 7α-dehydroxylation activity using cell extracts or whole cell suspensions, respectively. Bile acid conversion rates using either [14C]-cholic acid or [14C]-chenodeoxycholic acid as substrates increased at approximately the same rate when either cholic or chenodeoxycholic acid was added to growing cultures as inducer. The induction of 7α-dehydroxylase activity was highly specific requiring a free C-24-carboxyl group and an unhindered 7α-hydroxy group on the B ring of the steroid nucleus. Unexpectedly, cholic acid also rapidly induced NADH:flavin oxidoreductase activity in growing cultures of this bacterium.  相似文献   

15.
Chemical synthesis of mixed diesters of ethanediol with N-acyl amino acids and fatty acids is described. The synthesis is performed in three steps: (1) preparation of N-acyl amino acids using fatty acid ester of N-hydroxyphthalimide as an acylating agent; (2) partial esterification of ethanediol with N-acyl amino acid, in tetrahydrofuran in presence of thionyl chloride; (3) further esterification of the monoester of ethanediol with a fatty acid, to a mixed diester, in presence of the same reagent.  相似文献   

16.
Starting from the structure of ice (in which each water molecule is surrounded by other four water molecules forming a tetrahedron with a value of 4.51 Å for the edge O–O distance), and the knowledge that this value also corresponds to the O7–O12 distance of the skeleton of cholic acid, it is hypothesized that two steroid cholic acid moieties, with an appropriate steroid–steroid distance and a belly-to-belly orientation, could encapsulate a single water molecule between them. To check this hypothesis two succinyl derivatives of cholic acid (a monomer and the related head–head dimer in which the succinyl group is the linking bridge) were designed. The expected “ice-like” structure is found in the crystal of the dimer. There is a hydrogen bond synergy between those participating in the “ice-like” structure, and those in which the bridge is involved with the O7–H hydroxy group and the side chain of the steroid.  相似文献   

17.
The crystal structure of three head-to-head dimers (having two cholic acid or deoxycholic acid units) linked at carbon atoms C3 by aromatic or alkyl bridges is studied. An internal coordinates system is necessary for describing the relative orientation in the space of the two bile acid residues. Five angles (three torsion and two common ones) are necessary for defining the relative position of both steroid residues in space. Carbon atoms C3 (which always carries a α-hydroxy group in natural bile acids), and C10 and C13 (which always carry β-methyl groups) of each steroid residue are suitable for this purpose. Furthermore, the distance between each C3 carbon atoms of both steroid residues will allow one to locate the steroids in space. The three dimers selected provide a large range of values for these angles. The packing, hydrogen bond network, and location of guest in the three crystals are discussed.  相似文献   

18.
Freshly isolated cultures (2060) of human intestinal bacteria of the predominant flora, among them 1029 strains of saccharolytic Bacteroides species, were tested for cholic acid transformation. Eight Bacteroides strains reduced cholate to chenodeoxycholate, while 73 strains dehydroxylated at C7, producing deoxycholate. Concurrent oxidation of hydroxyl groups, mainly at C7, was seen with many strains. No strain was able to dehydroxylate simultaneously at C7 and C12. One isolate, identified as a mixed culture of Bacteroides fragilis and B. uniformis, epimerized cholic acid at C5 and simultaneously epimerized, oxidized and dehydroxylated at C7. The following transformation products were identified: 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic acid (ursocholic acid), 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic acid and a 3 alpha,12 alpha-dihydroxy-5 alpha-cholenoic acid. Dehydroxylating and epimerizing abilities were detected when fresh isolates were tested first for cholate transformation. They were no longer recognizable after some serial transfers. Dehydroxylation at C12 of cholate could not be demonstrated with mixed fecal cultures. The possible intermediate, however, 3 alpha,7 alpha-dihydroxy-5 beta-chol-11-enoate, was abundantly hydrogenated by stool suspensions.  相似文献   

19.
Urine from patients with cerebrotendinous xanthomatosis (CTX) was found to contain a number of minor bile acids along with three major bile acids, 7-epicholic acid, norcholic acid, and cholic acid. The following minor bile acids were identified by combined gas-liquid chromatography-mass spectrometry: 7-ketobisnordeoxycholic acid; 12-ketobisnorchenodeoxycholic acid; 7-ketonordeoxycholic acid; 12-ketochenodeoxycholic acid; 7-ketodeoxycholic acid; 12-ketochendeoxycholic acid; bisnorcholic acid; allonorcholic acid; allocholic acid; 1 beta-hydroxybisnorcholic acid; 1 beta-hydroxynorcholic acid; 1 beta-hydroxycholic acid; 2 beta-hydroxybisnorcholic acid; 2 beta-hydroxy-norcholic acid; 2 beta-hydroxycholic acid. The presence of C22 and C23 bile acids in urine of the CTX patients suggests that bile alcohols having a hydroxyl group at C22 or C23 in the side chain may be further degraded to these bile acids.  相似文献   

20.
A conjugate in which the steroid nucleus of cholic acid was linked to EDTA via an 11-atom spacer was obtained by reacting the succinimidyl ester of cholic acid with the amine formed by reaction of a benzyl isothiocyanate derivative of EDTA with N-(tert-butoxycarbonyl)ethylenediamine and subsequent deprotection. Potentiometric titration studies with model complexes showed that the EDTA moiety retained the ability to form 1:1 chelates of high thermodynamic stability, although formation constants were some 3-4 log K units lower for complexes of the conjugate than for the analogous chelates with underivatized EDTA. A complex formed between the cholic acid-EDTA conjugate and 111InIII was clearly rapidly into the liver when injected iv into mice, with subsequent excretion from the liver into the gastrointestinal tract being complete within 1 h of injection. Radioscintigraphic imaging studies conducted in a rabbit given the 111In-labeled conjugate also showed early liver uptake followed by rapid clearance from the liver into the intestine, with good visualization of the gallbladder in images obtained at 20-25 min postinjection. It is concluded that conjugation to cholic acid provides a useful means for the hepatobiliary delivery of EDTA chelates that otherwise exhibit predominantly extracellular distribution and renal clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号