首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》2004,357(8):2324-2330
The reactions of Me(Ph)SnCl2 and Et(Ph)SnCl2 with 2,6-diacetylpyridine bis(thiosemicarbazone) (H2DAPTSC) afforded the complexes [Me(Ph)Sn(HDAPTSC)]Cl · 1.25MeOH (1) and [Et(Ph)Sn(H2DAPTSC)]Cl2 · MeOH · H2O (2), respectively. Single-crystal X-ray crystallography showed that in both complexes the ligand, monodeprotonated in 1 and neutral in 2, is S(1),S(2),N(3),N(4),N(5)-coordinated, and the coordination geometry around the metal can be described as a distorted pentagonal bipyramid with the aryl and alkyl groups in axial positions. 1H and 119Sn NMR studies of solution in DMSO suggest that 2 dissociates completely in this solvent, while 1 evolves to the new complex [Me(Ph)Sn(DAPTSC)], with release of H2DAPTSC and Me(Ph)SnCl2. These conclusions were also supported by conductivity measurements.  相似文献   

2.
Three binuclear Co(III) complexes with 5,5′-(buta-1,3-diyne-1,4-diyl)bis(3-tert-butylcatechol) (L1), 5,5′-(2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L2) and 5,5′-(4,4′-(buta-1,3-diyne-1,4-diyl)bis(2,5-dimethoxy-4,1-phenylene))bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L3) have been prepared. The triple bond-containing L1, L2 and L3 ligands were synthesized by a cross-coupling reaction. These complexes were characterized by elemental analyses, electrochemical measurements, 1H NMR and UV-Vis spectra. In [Co2(bpy)4(L1)]2+, electrochemical oxidation of the complexes occurs at the bridges as two closely spaced one-electron couples. UV-Vis spectra reveal that chemical oxidation of [Co2(bpy)4(L1)]2+ using Ag+ occurs as a two-electron process forming [Co2(bpy)4(L1Cat,SQ)]3+ or [Co2(bpy)4(L1SQ,SQ)]4+. On the other hand, [Co2(bpy)4(L2)]2+ and [Co2(bpy)4(L3)]2+ exhibit different oxidation behavior under the same experimental conditions. In this report we discuss the role of the distance between the two metal atoms on the oxidative behavior of binuclear Co(III) complexes.  相似文献   

3.
Novel triorganotin(IV) derivatives of β-diketonate Q ligands (HQ in general, in detail HQfur = 1-phenyl-3-methyl-4-(2-furancarbonyl)-pyrazol-5-one, HQthi = 1-phenyl-3-methyl-4-(2-thienylcarbonyl)-pyrazol-5-one) of general formula (Q)SnR3·xH2O (R = Ph, x = 0; R = Bun or Me, x = 1) have been synthesized and spectroscopically and thermally characterized. Triphenyltin(IV) complexes have been isolated as anhydrous compounds while trialkyltin(IV) are always monohydrated. The structures of (Qfur)SnPh3 and (Qthi)SnMe3(OH2) are recorded. The tin atoms are five-coordinate in both. In the first, the pyrazolonate ligand behaves as an O,O′-bidentate; there are two similar but independent molecules in the structure. In the quasi-trigonal-bipyramidal environments, Sn-O(acyl) are 2.478(3), 2.364(3), Sn-O(pyrazolonate) 2.050(2), 2.079(2), Sn-C 2.123(4)-2.162(3) Å with the longer O(acyl) and a phenyl group quasi-trans (O-Sn-C 162.5(1), 160.8(1)°). In (Qthi)SnMe3(OH2), the three methyl groups are equatorial (Sn-C 2.1259(9)-2.1380(8) Å); Sn-O(Qthi,OH2) are 2.2143(5), 2.3350(6) Å, O-Sn-O 175.36(2)°. Trimethyltin(IV) derivatives decompose on heating with release of H2O and SnMe4 and formation of (Q)2SnMe2. Decomposition occurs also within two days after dissolution of (Q)SnMe3(OH2) in chloroform.  相似文献   

4.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

5.
Diorganotin(IV) complexes of N-acetyl-l-cysteine (H2NAC; (R)-2-acetamido-3-sulfanylpropanoic acid) have been synthesized and their solid and solution-phase structural configurations investigated by FTIR, Mössbauer, 1H, 13C and 119Sn NMR spectroscopy. FTIR results suggested that in R2Sn(IV)NAC (R = Me, Bu, Ph) complexes NAC2− behaves as dianionic tridentate ligand coordinating the tin(IV) atom, through ester-type carboxylate, acetate carbonyl oxygen atom and the deprotonated thiolate group. From 119Sn Mössbauer spectroscopy it could be inferred that the tin atom is pentacoordinated, with equatorial R2Sn(IV) trigonal bipyramidal configuration. In DMSO-d6 solution, NMR spectroscopic data showed the coordination of one solvent molecule to tin atom, while the coordination mode of the ligand through the ester-type carboxylate and the deprotonated thiolate group was retained in solution. DFT (Density Functional Theory) study confirmed the proposed structures in solution phase as well as the determination of the most probable stable ring conformation. Biological investigations showed that Bu2SnCl2 and NAC2 induce loss of viability in HCC cells and only moderate effects in non-tumor Chang liver cells. NAC2 showed lower cytotoxic activity than Bu2SnCl2, suggesting that the binding with NAC2− modulates the marked cytotoxic activity exerted by Bu2SnCl2. Therefore, these novel butyl derivatives could represent a new class of anticancer drugs.  相似文献   

6.
Silver(I) acylpyrazolonate derivatives of formula [Ag(Q)(R3P)]2 and [Ag(Q)(R3P)2], (QH=1-phenyl-3-methyl-4-R′(CO)-pyrazol-5-one; QOH, R′=furane; QSH, R′=thiophene; R=Ph, Cy, o-tol), have been synthesised and characterised, both in the solid state and in solution. The derivatives [Ag(Q)(R3P)]2 contain dinuclear AgO2NP units with the acylpyrazolonate coordinating in a bridging O,O′-Q-N fashion. The [Ag(Q)(R3P)2] are tetrahedral species, with the distortion from ideal geometry increasing with the bulk of the phosphine. The [Ag(Q)(R3P)2] derivatives are fluxional in chloroform solution when R3P is sterically hindered (R=Cy or o-tol), dissociating partially to the [Ag(Q)(R3P)] fragment and free R3P. [Ag(QS)(Ph3P)]2 reacts with 1-methyl-2-mercaptoimidazole (Hmimt) affording the compound [Ag(Hmimt)(Ph3P)(QS)] and [Ag(QO)(Ph3P)]2 reacts with 1-methyl-imidazole (Meim) affording the compound [Ag(Meim)(Ph3P)(QO)], whereas [Ag(QS)(Ph3P)]2 reacts with 1,10-phenanthroline (phen), affording the compound [Ag(phen)(Ph3P)](QS). Finally [Ag(QS)(Ph3P)2] reacts with phen producing the ionic species [Ag(phen)(Ph3P)2](QS).  相似文献   

7.
Several alkyl- or aryl-tin(IV) halides of general formula SnRnX4−n (n = 0-2; R = Me, Et, nBu, tBu, Ph; X = Cl, Br), possessing Lewis acidic character, have been reacted with the polydentate N-donor ligand bis(1,2,4-triazolyl)methane (Btm), affording Btm(SnRnCl4−n) complexes. (Btm)2SnnBu2Br2 and (Btm)SnnBu2(NO3)2 are also reported. These materials were characterized by elemental analyses, IR and 1H (and, in selected cases, 119Sn) NMR spectroscopy, and, were possible, ab initio X-ray powder diffraction methods. The crystal structures determined by the latter method showed that Btm ligands, in the exobidentate mode, link Sn(IV) fragments which lie 9.5-11.2 Å apart (depending on the Btm conformation and on the local metal stereochemistry), in one-dimensional chains packed in parallel bundles. The main geometrical features of these 1D polymers are compared with those of the bis(imidazolyl)methane complexes and of the known Btm derivative, Btm(Ph2SnBr2). Interestingly, the expected isomorphous structures for selected couples was not found, as if very subtle energetic differences were driving the crystallization of these species into different structure types.  相似文献   

8.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

9.
Six new triorganotin(IV) complexes, [R3Sn(O2SeC6H4Cl)]n (R = Me 1; Ph 2), [R3Sn(O2SeC6H4Me)]n (R = Me 3; Ph 4), [R3Sn(O2SeC6H4Bu)]n (R = Me 5; Ph 6) have been synthesized by the reaction of 4-chlorobenzeneseleninic acid, p-Tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, and X-ray crystallography. Crystal structures show that all of the complexes exhibit 1D infinite chain structures which are generated by the bidentate oxygen atoms and the five-coordinated tin centers.  相似文献   

10.
A mononuclear cobalt(III)-peroxo complex bearing a macrocyclic tetradentate N4 ligand, [CoIII(TMC)(O2)]+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was generated in the reaction of [CoII(TMC)]2+ and H2O2 in the presence of triethylamine in CH3CN. The reactivity of the cobalt(III)-peroxo complex was investigated in aldehyde deformylation with various aldehydes and compared with that of iron(III)- and manganese(III)-peroxo complexes, such as [FeIII(TMC)(O2)]+ and [MnIII(TMC)(O2)]+. In this reactivity comparison, the reactivities of metal-peroxo species were found to be in the order of [MnIII(TMC)(O2)]+ > [CoIII(TMC)(O2)]+ > [FeIII(TMC)(O2)]+. A positive Hammett ρ value of 1.8, obtained in the reactions of [CoIII(TMC)(O2)]+ and para-substituted benzaldehydes, demonstrates that the aldehyde deformylation by the cobalt(III)-peroxo species occurs via a nucleophilic reaction.  相似文献   

11.
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (fac-6).  相似文献   

12.
Rh(I), Ir(I), Pd(II) and Pt(II) metal complexes of bis(2-diphenylphosphino)ethyl)benzylamine(DPBA) and bis(2-diphenylarsino)ethyl)benzylamine (DABA) have been synthesized using various starting materials. Reaction of RhCl(CO)(AsPh3)2 with DPBA or DABA in methanol resulted in the formation of cationic complexes of the composition, [Rh(CO)(L)]Cl (L = DPBA or DABA). Interaction of [IrCl(COD)]2 with DPBA in benzene resulted in the formation of a neutral complex [IrCl(DPBA)]. Reaction of [PdCl2(COD)] with the ligand DPBA in benzene resulted in a cationic complex of the composition [PdCl(DPBA)]Cl. Interaction of [PdCl(DPBA)]BPh4 with SnCl2 gave the complex [Pd(SnCl3)(DPBA)]BPh4. The ligands DPBA and DABA react with PtCl2(COD) in acetone to give neutral, Pt(II) complexes of the type, [PtCl2L] (L = DPBA or DABA). All the complexes were fully characterized by elemental analysis, conductivity measurements, IR and far-IR and 31P{1H} NMR spectral data.  相似文献   

13.
The reaction of (COD)PdCl2 (COD = 1,5-cyclooctadiene) with (3-Py)2SiR1R2 (3-Py = 3-pyridyl; R1 = Ph, R2 = Ph (m-pdps); R1 = Ph, R2 = Me (m-pmps)) in acetone affords single crystals consisting of cyclodimers, [PdCl2((3-Py)2SiR1R2)]2, whereas the same reaction in a mixture of dichloromethane and ethanol yields amorphous spheres consisting of cyclotrimers, [PdCl2((3-Py)2SiR1R2)]3. In a boiling chloroform solution, the cyclodimers are completely converted to cyclotrimers. These cyclotrimers, in the 10−60 °C range, are partly returned to cyclodimers. By contrast, the reaction of (COD)PdCl2 with (3-Py)2SiR1R2 (R1 = Bu, R2 = Me (m-pbms); R1 = dodecyl, R2 = Me (m-pddms)) yields amorphous spheres consisting of cyclotrimers irrespective of solvents. Both [PdCl2(m-pbms)]3 and [PdCl2(m-pddms)]3 are initially cyclotrimers in chloroform, but they exist as a mixture of cyclodimers and cyclotrimers in solution in the 10−60 °C range. The metallacycles tend to form cyclodimers in the order m-pdps > m-pmps > m-pbms > m-pddms. The equilibrium between cyclodimers and the cyclotrimers is sensitive to solvent, temperature, and concentration as well as molecular structure.  相似文献   

14.
Three new diorganotin(IV) complexes, [Bu2Sn(O2SeC6H5)2]n (1), [Bu2Sn(O2SeC6H4Me)2]n (2), [Me2Sn(O2SeC6H4Bu)2]n (3) have been synthesized by the reaction of benzeneseleninic acid, p-tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with Me2SnCl2 or Bu2SnCl2 in the presence of sodium ethoxide in methanol at 50 °C. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectroscopy and X-ray crystallography. X-ray diffraction studies of 1, 2, 3 show that the areneseleninate groups behave as double bridges between the tin atoms leading to polymeric chain structure with Sn2O4Se2 eight-membered ring. The organic groups bonded to the tin atoms are in trans-position in the resulting octahedral arrangement.  相似文献   

15.
New silver(I) acylpyrazolonate derivatives [Ag(Q)], [Ag(Q)(PR3)]2 and [Ag(Q)(PR3)2] (HQ = 1-R1-3-methyl-4-R2(CO)pyrazol-5-one, HQBn = R1 = C6H5, R2 = CH2C6H5; HQCHPh2 = R1 = C6H5, R2 = CH(C6H5)2; HQnPe = R1 = C6H5, R2 = CH2C(CH3)3; HQtBu = R1 = C6H5, R2 = C(CH3)3; HQfMe = R1 = C6H4-p-CF3, R2 = CF3; HQfEt = R1 = C6H5, R2 = CF2CF3; R = Ph or iBu) have been synthesized and characterized in the solid state and solution. The crystal structure of 1-(4-trifluoromethylphenyl)-3-methyl-5-pyrazolone, the precursor of proligand HQfMe and of derivatives [Ag(QnPe)(PPh3)2] and [Ag(QnPe)(PiBu3)]2 have been investigated. [Ag(QnPe)(PPh3)2] is a mononuclear compound with a silver atom in a tetrahedrally distorted AgO2P2 environment, whereas [Ag(QnPe)(PiBu3)]2 is a dinuclear compound with two O2N-exotridentate bridging acylpyrazolonate ligands connecting both silver atoms, their coordination environment being completed by a phosphine ligand.  相似文献   

16.
Combination of (1S,2S)-cyclopentanediylbis(diphenylphosphine) with [Ru(η4-C8H12){η3-(CH2)2CMe}2] afforded the chelate complex [Ru{η3-(CH2)2CMe}2{(1S,2S)-C5H8(PPh2)2}] (1), which gave (OC-6-13)-[RuCl2{(1S,2S)-C5H8(PPh2)2}{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}] (2) upon reaction with methanolic HCl in acetone, followed by the addition of the β-aminophosphine in DMF. The (P  N)2-chelated complexes (OC-6-13)-[RuCl2{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (3) and (OC-6-13)-[RuCl2{(1R,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (4) resulted from RuCl3 · 3H2O and the P,N ligands under reducing conditions. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction. Following activation by KOBu-t in isopropanol, compounds 24 catalyzed the enantioselective transfer hydrogenation of acetophenone with i-PrOH as the hydrogen source as well as the direct hydrogenation of the ketone by H2 in low to moderate e.e. (up to 67%).  相似文献   

17.
Reaction of the lithium salts of N,N′-dialkyl-2-amino-4-imino-pent-2-enes, nacnacRLi(THF) (R = CH2Ph, Cy, nPr, iBu or S-CH(Me)Ph), with half an equivalent of CrCl2(THF)x yielded the homoleptic complexes (nacnacR)2Cr. All complexes were characterized by X-ray diffraction studies and displayed a highly symmetric, square-planar coordination around the chromium center with strong boat-like distortions of the diketiminate ligands. Reaction of nacnacRLi(THF) (R = CH2Ph, Cy) with one equivalent of CrCl2(THF)x afforded the dimeric complexes {nacnacRCr(μ-Cl)}2.  相似文献   

18.
《Inorganica chimica acta》2006,359(11):3639-3648
A series of alkynylgold(I) bis(diphenylphosphino)alkyl- and aryl-amine complexes, [{Ph2PN(R)PPh2}Au2(CCR′)2] [R = nPr, R′ = Ph (1), C6H4OMe-p (2), C6H4Me-p (3), C6H4Cl-p (4); R = C6H4OMe-p, R′ = Ph (5)], has been synthesized. The X-ray crystal structures of 1 and 2 revealed the presence of short intramolecular Au⋯Au contacts with the distances of 2.8404(8) and 3.0708(7) Å. The luminescence behavior of the complexes were studied.  相似文献   

19.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

20.
Silver carboxylates [Ag(O2CR): R=Me, tBu, 2,4,6-Me3C6H2], fluorocarboxlyates [Ag(O2CRf): Rf=C3F7, C6F13, C7F15] and their phosphine adducts [Ag(O2CR)·nPR3′: R=Me, tBu, 2,4,6-Me3C6H2, R′=Me, Ph, n=2; R=Me, R′=Me, n=3; Ag(O2CRf).2PPh3, Rf=C3F7, C6F13, C7F15] have been synthesised, characterised spectroscopically and used as precursors in the aerosol-assisted chemical vapour deposition of silver films. All the phosphine adducts produced films, though in general PMe3 adducts, proved more successful than PPh3 analogues. The fluoro-carboxylates and their PPh3 adducts all generated silver films, though the growth rate for the adducts was lower. All these latter films showed carbon impurities while fluorine was also evident in most cases. The X-ray structure of AgO2CC3F7·2PPh3 is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号