首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics (MD) simulation of the rat class 3 aldehyde dehydrogenase (ALDH) with nicotinamide dinucleotide (NAD) cofactors and explicit water molecules are reported. Our results demonstrate that MD simulation using the latest methodologies can maintain the crystal structure of the enzyme, as well as closely reproduce the short timescale dynamics of the enzyme. Furthermore, the examination of the distance between the nucleophilic Cys-243 and the NAD cofactor reveal important fluctuations that could be linked to ALDH catalysis. Finally, our quantum mechanical model of benzaldehyde in the active site of ALDH demonstrates that the enzyme requires only minor conformational changes to be poised for nucleophilic attack on the substrate.  相似文献   

2.
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.  相似文献   

3.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

4.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

5.
Aldehyde dehydrogenase (ALDH) activity was measured in primary cultures of normal human hepatocytes and of the human hepatoma cell line HepG2 after application of phenobarbital (PB) or 3-methylcholanthrene (MC) for 5 days. Treatment with PB alone resulted in a significant increase in both protein and DNA content at concentrations of 2 and 3 mM. Treatment with MC at a concentration as low as 5 microM led to a significant loss of cells when it lasted more than 5 days. Concentrations of 3-5 mM of PB in the media of HepG2 cell cultures caused a 2-fold enhancement of the activity of ALDH, as measured with NAD and propionaldehyde (P/NAD) or benzaldehyde (B/NAD). On the other hand, MC-treated cultures (5 microM) showed a 20-fold increase in enzyme activity measured with NADP and benzaldehyde (B/NADP), and a 2-fold increase in B/NAD activity. Combined treatment with both PB and MC led to an effect of dynamic synergism as far as B/NAD and B/NADP activities are concerned, suggesting a metabolite of MC as the mediator for the increase of ALDH activity. Normal human hepatocytes in primary cultures responded to PB (3 mM) in a similar way as HepG2 cells as far as DNA and protein content and ALDH activity are concerned. It is concluded, that HepG2 hepatoma cells behave similar to the normal hepatocytes in terms of ALDH regulation and can be used for studies on the activity of ALDH as modified by added xenobiotics.  相似文献   

6.
The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase, and nitroglycerin (GTN) denitrating activities. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant. In the present study we compared the wild type enzyme (ALDH2*1) with the Asian variant (ALDH2*2) regarding GTN bioactivation and the effects of Alda-1. Alda-1 increased acetaldehyde oxidation by ALDH2*1 and ALDH2*2 approximately 1.5- and 6-fold, respectively, and stimulated the esterase activities of both enzymes to similar extent as the coenzyme NAD. The effect of NAD was biphasic with pronounced inhibition occurring at ≥5 mm. In the presence of 1 mm NAD, Alda-1 stimulated ALDH2*2-catalyzed ester hydrolysis 73-fold, whereas the NAD-stimulated activity of ALDH2*1 was inhibited because of 20-fold increased inhibitory potency of NAD in the presence of the drug. Although ALDH2*2 exhibited 7-fold lower GTN denitrating activity and GTN affinity than ALDH2*1, the rate of nitric oxide formation was only reduced 2-fold, and soluble guanylate cyclase (sGC) activation was more pronounced than with wild type ALDH2 at saturating GTN. Alda-1 caused slight inhibition of GTN denitration and did not increase GTN-induced sGC activation in the presence of either variant. The present results indicate that Alda-1 stimulates established ALDH2 activities by improving NAD binding but does not improve the GTN binding affinity of the Asian variant. In addition, our data revealed an unexpected discrepancy between GTN reductase activity and sGC activation, suggesting that GTN denitration and bioactivation may reflect independent pathways of ALDH2-catalyzed GTN biotransformation.  相似文献   

7.
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays an essential role in nitroglycerin (GTN) bioactivation, resulting in formation of NO or a related activator of soluble guanylate cyclase. ALDH2 denitrates GTN to 1,2-glyceryl dinitrate and nitrite but also catalyzes reduction of GTN to NO. To elucidate the relationship between ALDH2-catalyzed GTN bioconversion and established ALDH2 activities (dehydrogenase, esterase), we compared the function of the wild type (WT) enzyme with mutants lacking either the reactive Cys-302 (C302S) or the general base Glu-268 (E268Q). Although the C302S mutation led to >90% loss of all enzyme activities, the E268Q mutant exhibited virtually unaffected rates of GTN denitration despite low dehydrogenase and esterase activities. The nucleotide co-factor NAD caused a pronounced increase in the rates of 1,2-glyceryl dinitrate formation by WT-ALDH2 but inhibited the reaction catalyzed by the E268Q mutant. GTN bioactivation measured as activation of purified soluble guanylate cyclase or release of NO in the presence of WT- or E268Q-ALDH2 was markedly potentiated by superoxide dismutase, suggesting that bioavailability of GTN-derived NO is limited by co-generation of superoxide. Formation of superoxide was confirmed by determination of hydroethidine oxidation that was inhibited by superoxide dismutase and the ALDH2 inhibitor chloral hydrate. E268Q-ALDH2 exhibited ∼50% lower rates of superoxide formation than the WT enzyme. Our results suggest that Glu-268 is involved in the structural organization of the NAD-binding pocket but is not required for GTN denitration. ALDH2-catalyzed superoxide formation may essentially contribute to oxidative stress in GTN-exposed blood vessels.Aldehyde dehydrogenases (ALDH; EC 1.2.1.3)2 catalyze the oxidation of aliphatic and aromatic aldehyde substrates to the corresponding carboxylic acids with NAD(P) serving as electron accepting co-factor (1). The mitochondrial isoform (ALDH2), a homotetrameric protein with subunits of ∼54 kDa, appears to be essential for detoxification of ethanol-derived acetaldehyde, as indicated by significantly lowered alcohol tolerance of individuals expressing a low activity mutant of the protein (2, 3). Aldehyde oxidation by ALDH2 is thought to involve nucleophilic reaction of the substrate with a critical cysteine residue in the active site (Cys-302 in the human protein), resulting in formation of a thiohemiacetal intermediate, followed by hydride transfer to NAD, yielding a thioester intermediate that is hydrolyzed to the carboxylic acid product in a reaction that involves activation of H2O by an adjacent glutamate residue (Glu-268). In addition to aldehyde oxidation, ALDH2 catalyzes ester hydrolysis (4). The esterase activity is stimulated by NAD, but the co-factor is not essential for the reaction, which is initiated by nucleophilic attack of the substrate by Cys-302, resulting in formation of a thioester and release of the corresponding alcohol by hydrolysis of the intermediate through activation of water by Glu-268 (4).The beneficial therapeutic effects of the antianginal drug GTN are thought to involve bioactivation of the organic nitrate in vascular smooth muscle to yield NO or a related species that activates sGC, resulting in cGMP-mediated vasorelaxation (5). In a seminal paper published in 2002, Stamler and co-workers (6) discovered that ALDH2 essentially contributes to vascular GTN bioactivation, and this has been confirmed in numerous later studies (for review see Ref. 7). Stamler and co-workers (6) proposed that GTN denitration involves the established esterase activity of ALDH2, i.e. nucleophilic attack of a nitro group of GTN by Cys-302, resulting in formation of a thionitrate intermediate and release of the corresponding alcohol, preferentially 1,2-glyceryl dinitrate (1,2-GDN). The thionitrate intermediate would then release nitrite either through nucleophilic attack of one of the adjacent cysteine residues (Cys-301 or Cys-303), resulting in formation of a disulfide in the active site, or through Glu-268-aided hydrolysis yielding a sulfenic acid derivative of Cys-302, which could undergo S-thiolation (8) to form a cysteinyl disulfide with one of the adjacent cysteine residues. This mechanism would be compatible both with the effect of NAD, which is not essential but increases reaction rates, and with GTN-triggered enzyme inactivation that is partially prevented by reduced thiols with two SH groups like DTT or dihydrolipoic acid. According to a brief statement in a paper on the structure of the East Asian (E487K) variant, mutation of Cys-302 and Glu-268 resulted in an almost complete loss of GTN reductase activity of ALDH2 (3), but so far the proposed role of these residues in GTN metabolism has not been thoroughly studied, and the mechanism underlying bioactivation of the nitrate is still unknown.  相似文献   

8.
Aldehyde dehydrogenase (ALDH) is a widely distributed enzyme in nature. Although many ALDHs have been reported until now, the detailed enzymatic properties of ALDH from Archaea remain elusive. Herein, we describe the characterization of an ALDH from the hyperthermophilic archaeon Sulfolobus tokodaii. The enzyme (stALDH) could utilize various aldehydes as substrates, and maximal activity was found with acetaldehyde and the coenzyme NAD. The optimal temperature and pH were 80 °C and 8, respectively, and high thermostability was found with the half-life at 90 °C to be 4 h. The enzyme was considerably resistant to nitroglycerin (GTN) inhibition, which could be restored by reducing agent DTT or (±)-??-lipoic acid. Coenzyme NAD or NADP could regulate the enzymatic thermostability, as well as the esterase activity. Molecular modeling suggested that the enzyme harbored similar structural arrangement with its eukaryotic and bacterial counterparts. Sequence alignment showed the conserved catalytic residues E240 and C274 and cofactor interactive sites N142, K165, I168 and E370, the function of which were verified by site-directed mutagenesis analysis. This is the most thermostable ALDH reported until now and the unique property of this enzyme is potentially beneficial in the fields of biotechnology and biomedicine.  相似文献   

9.
Malate dehydrogenase (MDH) catalyzes the conversion of oxaloacetate and malate by using the NAD/NADH coenzyme system. The system is used as a conjugate for enzyme immunoassays of a wide variety of compounds, such as illegal drugs, drugs used in therapeutic applications and hormones. We elucidated the biochemical and structural features of MDH from Thermus thermophilus (TtMDH) for use in various biotechnological applications. The biochemical characterization of recombinant TtMDH revealed greatly increased activity above 60°C and specific activity of about 2,600 U/mg with optimal temperature of 90°C. Analysis of crystal structures of apo and NAD-bound forms of TtMDH revealed a slight movement of the binding loop and few structural elements around the co-substrate binding packet in the presence of NAD. The overall structures did not change much and retained all related positions, which agrees with the CD analyses. Further molecular dynamics (MD) simulation at higher temperatures were used to reconstruct structures from the crystal structure of TtMDH. Interestingly, at the simulated structure of 353 K, a large change occurred around the active site such that with increasing temperature, a mobile loop was closed to co-substrate binding region. From biochemical characterization, structural comparison and MD simulations, the thermal-induced conformational change of the co-substrate binding loop of TtMDH may contribute to the essential movement of the enzyme for admitting NAD and may benefit the enzyme''s activity.  相似文献   

10.
Ho KK  Hurley TD  Weiner H 《Biochemistry》2006,45(31):9445-9453
Random mutagenesis followed by a filter-based screening assay has been used to identify a mutant of human class 1 aldehyde dehydrogenase (ALDH1) that was no longer inhibited by Mg(2+) ions but was activated in their presence. Several mutants possessed double, triple, and quadruple amino acid substitutions with a total of seven different residues being altered, but each had a common T244S change. This point mutation proved to be responsible for the Mg(2+) ion activation. An ALDH1 T244S mutant was recombinantly expressed and was used for mechanistic studies. Mg(2+) ions have been shown to increase the rate of deacylation. Consistent with the rate-limiting step for ALDH1 being changed from coenzyme dissociation to deacylation was finding that chloroacetaldehyde was oxidized more rapidly than acetaldehyde. Furthermore, Mg(2+) ions only in the presence of NAD(H) increased the rate of hydrolysis of p-nitrophenyl acetate showing that the metal only affects the binary complex. Though the rate-limiting step for the T244S mutant was different from that of the native enzyme, the catalytic efficiency of the mutant was just 20% that of the native enzyme. The basis for the change in the rate-limiting step appears to be related to NAD(+) binding. Using the structure of a sheep class 1 ALDH, it was possible to deduce that the interaction between the side chain of T244 and its neighboring residues with the nicotinamide ring of NAD(+) were an essential determinant in the catalytic action of ALDH1.  相似文献   

11.
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.  相似文献   

12.
Imamura Y  Wu X  Noda A  Noda H 《Life sciences》2002,70(22):2687-2697
We examined the metabolism of N-desisopropylpropranolol (NDP), which is generated from propranolol (PL) by side-chain N-desisopropylation, to naphthoxylactic acid (NLA) in rat liver. S(-)-NDP (S-NDP) and R(+)-NDP (R-NDP) were enantioselectively metabolized to NLA in isolated rat hepatocytes and in an enzyme reaction system of rat liver mitochondria with cofactor NAD+. Furthermore, the clearance profiles of NDP enantiomers were examined in an enzyme reaction system of rat liver mitochondria without NAD+. The amounts of S-NDP remaining in the incubation medium were similar to those of R-NDP, suggesting that monoamine oxidase (MAO) catalyzes the deamination of NDP to the aldehyde intermediate, but fails to deaminate enantioselectively S-NDP or R-NDP. Cyanamide, a potent inhibitor of aldehyde dehydrogenase (ALDH), markedly decreased the formation of NLA from racemic NDP in the enzyme reaction system of rat liver mitochondria with NAD+. When rat liver cytosol and microsomes were added to this enzyme reaction system, no significant alterations were observed in the amount of NLA generated from racemic NDP. We concluded that MAO deaminates NDP to an aldehyde intermediate, and that mitochondrial ALDH subsequently catalyzes the enantioselective metabolism of the aldehyde intermediate to NLA in rat liver.  相似文献   

13.
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  相似文献   

14.
The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis.  相似文献   

15.
The full-length DNAs for two Saccharomyces cerevisiae aldehyde dehydrogenase (ALDH) genes were cloned and expressed in Escherichia coli. A 2,744-bp DNA fragment contained an open reading frame encoding cytosolic ALDH1, with 500 amino acids, which was located on chromosome XVI. A 2,661-bp DNA fragment contained an open reading frame encoding mitochondrial ALDH5, with 519 amino acids, of which the N-terminal 23 amino acids were identified as the putative leader sequence. The ALDH5 gene was located on chromosome V. The commercial ALDH (designated ALDH2) was partially sequenced and appears to be a mitochondrial enzyme encoded by a gene located on chromosome XV. The recombinant ALDH1 enzyme was found to be essentially NADP dependent, while the ALDH5 enzyme could utilize either NADP or NAD as a cofactor. The activity of ALDH1 was stimulated two- to fourfold by divalent cations but was unaffected by K+ ions. In contrast, the activity of ALDH5 increased in the presence of K+ ions: 15-fold with NADP and 40-fold with NAD, respectively. Activity staining of isoelectric focusing gels showed that cytosolic ALDH1 contributed 30 to 70% of the overall activity, depending on the cofactor used, while mitochondrial ALDH2 contributed the rest. Neither ALDH5 nor the other ALDH-like proteins identified from the genomic sequence contributed to the in vitro oxidation of acetaldehyde. To evaluate the physiological roles of these three ALDH isoenzymes, the genes encoding cytosolic ALDH1 and mitochondrial ALDH2 and ALDH5 were disrupted in the genome of strain TWY397 separately or simultaneously. The growth of single-disruption Δald1 and Δald2 strains on ethanol was marginally slower than that of the parent strain. The Δald1 Δald2 double-disruption strain failed to grow on glucose alone, but growth was restored by the addition of acetate, indicating that both ALDHs might catalyze the oxidation of acetaldehyde produced during fermentation. The double-disruption strain grew very slowly on ethanol. The role of mitochondrial ALDH5 in acetaldehyde metabolism has not been defined but appears to be unimportant.  相似文献   

16.
Wymore T  Deerfield DW  Hempel J 《Biochemistry》2007,46(33):9495-9506
Recent computer simulations of the cysteine nucleophilic attack on propanal in human mitochondrial aldehyde dehydrogenase (ALDH2) yielded an unexpected result: the chemically reasonable formation of a dead-end cysteine-cofactor adduct when NAD+ was in the "hydride transfer" position. More recently, this adduct found independent crystallographic support in work on formyltetrahydrofolate dehydrogenase, work which further found evidence of the same adduct on re-examination of deposited electron densities of ALDH2. Although the experimental data showed that this adduct was reversible, several mechanistic questions arise from the fact that it forms at all. Here, we present results from further quantum mechanical/molecular mechanical (QM/MM) simulations toward understanding the mechanistic implications of adduct formation. These simulations revealed formation of the oxyanion thiohemiacetal intermediate only when the nicotinamide ring of NAD+ is oriented away from the active site, contrary to prior arguments. In contrast, and in seeming paradox, when NAD is oriented to receive the hydride, disassociation of the oxyanion intermediate to form the dead-end adduct is more thermodynamically favored than maintaining the oxyanion intermediate necessary for catalysis to proceed. However, this disassociation to the adduct could be avoided through proton transfer from the enzyme to the intermediate. Our results continue to indicate that the unlikely source of this proton is the Cys302 main chain amide.  相似文献   

17.
Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in human prostate cancer epithelial (LNCaP) cells. In the present study, we attempted to identify if any of the three ALDH1A/RA synthesis enzymes are androgen responsive and how this may affect retinoid-mediated effects in LNCaP cells. We demonstrated that exposure of LNCaP cells to the androgen dihydrotestosterone (DHT) results in a 4-fold increase in ALDH1A3 mRNA levels compared with the untreated control. The mRNA for two other ALDH1A family members, ALDH1A1 and ALDH1A2, were not detected and not induced by DHT in LNCaP cells. Inhibition of androgen receptor (AR) with both the antiandrogen bicalutamide and small interfering RNA for AR support that ALDH1A3 regulation by DHT is mediated by AR. Furthermore, specific inhibition of the extracellular signal-regulated kinase and Src family of kinases with PD98059 and PP1 supports that AR's regulation of ALDH1A3 occurs by the typical AR nuclear-translocation cascade. Consistent with an increase in ALDH1A3 mRNA, DHT-treated LNCaP cells showed an 8-fold increase in retinaldehyde-dependent NAD(+) reduction compared with control. Lastly, treatment of LNCaP with all-trans retinal (RAL) in the presence of DHT resulted in significant up-regulation of the RA-inducible, RA-metabolizing enzyme CYP26A1 mRNA compared with RAL treatment alone. Taken together, these data suggest that (i) the RA biosynthesis enzyme ALDH1A3 is androgen responsive and (ii) DHT up-regulation of ALDH1A3 can increase the oxidation of retinal to RA and indirectly affect RA bioactivity and metabolism.  相似文献   

18.
A cytosolic thyroid-hormone-binding protein (xCTBP), predominantly responsible for the major binding activity of T3 in the cytosol of Xenopus liver, has been shown to be identical to aldehyde dehydrogenase class 1 (ALDH1) [Yamauchi, K., Nakajima, J., Hayashi, H., Horiuchi, R. & Tata, J.R. (1999) J. Biol. Chem. 274, 8460-8469]. Within this paper we surveyed which signaling, and other, compounds affect the thyroid hormone binding activity and aldehyde dehydrogenase activity of recombinant Xenopus ALDH1 (xCTBP/xALDH1) while examining the relationship between these two activities. NAD+ and NADH (each 200 microm), and two steroids (20 microm), inhibit significantly the T3-binding activity, while NADH and NADPH (each 200 microm), and iodothyronines (1 microm), inhibit the ALDH activity. Scatchard analysis and kinetic studies of xCTBP/xALDH1 indicate that NAD+ and T3 are noncompetitive inhibitors of thyroid-hormone-binding and ALDH activities, respectively. These results indicate the formation of a ternary complex consisting of the protein, NAD+ and thyroid hormone. Although the in vitro studies indicate that NAD+ and NADH markedly decrease T3-binding to xCTBP/xALDH1 at approximately 10-4 m, a concentration equal to the NAD content in various Xenopus tissues, photoaffinity-labeling of [125I]T3 using cultured Xenopus cells demonstrates xCTBP/xALDH1 bound T3 within living cells. These results raise the possibility that an unknown factor(s) besides NAD+ and NADH may modulate the thyroid-hormone-binding activity of xCTBP/xALDH1. In comparison, thyroid hormone, at its physiological concentration, would poorly modulate the enzyme activity of xCTBP/xALDH1.  相似文献   

19.
对由原核载体表达的人乙醛脱氢酶2(Aldehyde dehydrogenase 2,简称ALDH2)纯化工艺、酶活性改善、稳定性以及保存条件分别进行了参数的优化,以期为ALDH2商品化剂型开发提供理论依据。通过NAD(P)+酶活测定法,检测不同纯化工艺、金属离子以及不同保存条件对ALDH2的酶活性的影响。通过SDS-PAGE检测ALDH2在模拟胃液和胰液中的稳定性。结果显示,低离子磷酸盐缓冲液透析有利于ALDH2酶活性的恢复,且真空冷冻干燥处理可导致ALDH2酶活性下降。K+、Zn2+、Mg2+、Mn2+、Ca2+均能提高ALDH2酶活性。ALDH2在模拟胃液中稳定性良好,但在模拟胰液中迅速被降解。与此同时,ALDH2酶液在-20℃下能良好地保持其稳定性及酶活,但在4℃和30℃下保存一个月酶活急剧下降。以上结果表明,低离子磷酸盐缓冲液透析法、K+均能提高ALDH2的酶活性,同时该酶可耐受模拟胃液的降解作用,且添加山梨酸钾的ALDH2于-20℃可良好地保持其稳定性及酶活。  相似文献   

20.
The NAD- and NADP-dependent aldehyde dehydrogenase (ALDH) activities were evaluated in two rat hepatoma cell lines, namely the well-differentiated MH1C1 line and the less differentiated HTC line. Each activity was determined in parallel in isolated rat hepatocytes, for comparison. The aliphatic aldehyde acetaldehyde (ACA) and the aromatic aldehyde benzaldehyde (BA) were used as substrates. With the first substrate the ALDH activities found in the crude cytoplasmic extracts were lower in hepatoma cells than in normal hepatocytes, especially when measured with NADP as coenzyme (ACA/NADP). Otherwise, with benzaldehyde as substrate the NAD-dependent enzyme activity (BA/NAD) was increased about 9-fold in HTC cells over hepatocytes and decreased in MH1C1 cells, while the NADP-dependent (BA/NADP) activity was increased 38- and 2.5-fold in HTC and MH1C1 cell lines, respectively. Studies on the subcellular distribution of these enzyme activities showed that the activity measured with acetaldehyde and NAD (ACA/NAD) was almost equally distributed between the cytosol and the subcellular particles in the three cell populations, but the ACA/NADP activity was shifted towards the cytosolic compartment in hepatomas, especially in HTC cells. The BA/NAD and BA/NADP ALDH activities found in the organelles of hepatoma cells were markedly reduced in comparison with hepatocytes, in favour of the cytosol. The most striking difference between the normal and the transformed cells was the 94-fold increase over hepatocytes of the BA/NADP activity, found in the cytosolic fractions of HTC cells. MH1C1 cells showed a less pronounced (7.5-fold) enhancement of this tumour-associated specific activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号