首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
Previous analyses of the murine and human TSSC6 (also known as Phemx) proteins were not carried out using the full length sequence. Using 5'-RACE and cDNA library screening, we identified an additional 5' sequence for both the murine Tssc6 cDNA and its human homologue TSSC6. This novel sequence encodes a 5' exon encoding an in frame, upstream start codon, an N-terminal cytoplasmic domain and a transmembrane domain. The deduced, and now full length, murine and human TSSC6 proteins contained four hydrophobic regions together with other features characteristic of the tetraspanin superfamily. Computational analyses of the full length sequences show that TSSC6 is a genuine, albeit relatively divergent member of this superfamily. Using RNA from a number of mouse tissues, we identified seven splice variants of Tssc6. Splice variants of the human gene were also detected. Tssc6 expression was detected early in embryogenesis in primitive blood cells and was confined to haematopoietic organs in the adult mouse. Tssc6 expression was detected in many haematopoietic cell lines and was highest in cell lines of the erythroid lineage.  相似文献   

2.
3.
4.
5.
The cDNA sequence encoding the murine E2 subunit (dihydrolipoyl transacylase) of the branched-chain α-ketoacid dehydrogenase (BCKAD) complex was determined. In the region encoding the mature E2 subunit protein, both the nucleotide composition and predicted amino acid sequence are highly conserved between murine, human, and bovine species. In contrast, the 5′ sequence encoding the amino-terminal preprotein sequence and 3′ untranslated region are less well conserved. The 3′-noncoding region contains sequences highly homologous to the rodent B1 repeat elements, which are related to human Alu repeat sequences. This finding is similar to the presence of three Alu repeat sequences in the 3′-noncoding region of human E2 cDNA.  相似文献   

6.
《Gene》1997,184(2):273-278
Genes for the snRNP proteins U1-70K, U1-A, Sm-B′/B, Sm-D1 and Sm-E have been isolated from various metazoan species. The genes for Sm-D1 and Sm-E, which were isolated from a murine and human source respectively, appear to belong to a multigene family. It has been suggested that also for the mammalian U1-C protein such a multigene family exists. With the human U1-C cDNA as a probe, two genes containing sequences homologous to the probe sequence were isolated from a mouse genomic library. Simultaneously, a murine U1-C cDNA was isolated from a mouse cDNA library. This 0.74 kb cDNA contains an open reading frame (ORF) of 477 bp encoding a polypeptide of 159 amino acids (aa) which differs at only one position (position 65) from the human U1-C protein. One of the isolated U1-C genes contains an ORF as well and shares 92% nucleotide sequence identity with the mouse U1-C cDNA. The features of this gene, in particular the absence of introns, the acquisition of a 3′ poly(A) tail and flanking direct repeats, indicate that it represents a processed pseudogene. At the predicted aa sequence level, substitutions of conserved residues at functionally important positions are observed, strongly suggesting that expression of this gene would not lead to a functional polypeptide. The second U1-C gene appeared to be a pseudogene as well because it is also intronless and contains a frameshift mutation compared to the ORF in the mouse U1-C cDNA. The characterization of these two pseudogenes points to the existence of a U1-C multigene family in mice. Furthermore, comparison of aa sequences of the murine, human and Xenopus U1-C shows that the protein is highly conserved through evolution. Since the Xenopus U1-C differs from the two mammalian counterparts solely at a number of positions in the C-terminal region, it can be concluded that aa changes are less well tolerated in the N-terminal region of U1-C than in the rest of the protein.  相似文献   

7.
The HFE (HLA-H) gene is a strong candidate gene for hereditary haemochromatosis and was localized on the short arm of chromosome 6 to 6p21.3-p22. In addition, the sequence of the homologous mouse and rat cDNA and a partial sequence from the mouse gene have been reported recently. In this report, we describe the location of the human and the mouse HFE (HLA-H) gene within the histone gene clusters on the human chromosome 6 and the mouse chromosome 13. Both the human and the murine gene were located on syntenic regions within the histone gene clusters in the vicinity of the histone H1t gene. The genomic sequence of the human HFE (HLA-H) gene and the 3′ portion of the homologous mouse gene were determined. Comparison of the genomic sequences from man and mouse and the cDNA sequence from rat shows significant similarities, also beyond the transcribed region of the mouse gene. J. Cell. Biochem. 69:117–126, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function.  相似文献   

9.
Using RACE techniques we have cloned and sequenced one of the hamster liver 3-hydroxy-hexobarbital dehydrogenases which catalyze not only cyclic alcohols but also 17β-hydroxy-steroids and 3α-hydroxysteroids. The gene specific primers to 3-hydroxyhexobarbital dehydrogenase 1 (G2) were synthesized on the basis of its partial peptide sequences. The sequence of full length cDNA generated by 3′- and 5′-RACE PCR consisted of 1225 nucleotides including an open reading frame of 972 nucleotides encoding a protein of 323 amino acids. The deduced amino acid sequence matched exactly with the partial peptide sequences of hamster liver 3-hydroxyhexobarbital dehydrogenase 1 (G2). The sequence showed 84.5% identity to mouse liver 17β-dehydrogenase(A-specific), and 74–76% identity to human liver bile acid binding protein/3α-hydroxysteroid dehydrogenase (DD2), human liver 3α-hydroxysteroid dehydrogenase type I (DD4) and type II (DD3), and rabbit ovary 20α-hydroxysteroid dehydrogenase. The protein contains catalytic residues of aldo-keto reductases, Asp50, Tyr55, Lys84, His117. These results suggest that the hamster liver 3-hydroxyhexobarbital/17β(3α)-hydroxysteroid dehydrogenase belongs to aldo-keto reductase superfamily. The insert containing the full-length cDNA of 3-hydroxyhexobarbital dehydrogenase and vector specific overhang produced by PCR was annealed with pET-32 Xa/LIC vector. The plasmid was transformed into BL21 (DE3) cells containing pLysS. The recombinant enzyme was induced 1 mM IPTG. The expressed enzyme was produced as fusion protein and purified by nickel chelating affinity chromatography followed by POROS CM column chromatography and superdex 75 gel filtration. Molecular weight of the recombinant enzyme fused thioredoxin and his•tag was about 55 000 and that was 35 000 after Factor Xa protease treatment. The recombinant enzyme dehydrogenated 3-hydroxy-hexobarbital, 1-acenaphthenol, 2-cyclohexen-1-ol, testosterone, glycolithocholic acid as well as the native enzyme purified from hamster liver.  相似文献   

10.
11.
Molecular cloning of the murine cMOAT ATPase   总被引:1,自引:0,他引:1  
cMOAT encodes an ATPase within the family of cMOAT/MRP ATPases that functions as an ATP dependent, multispecific anion transporter within the canalicular surface of hepatocytes that has pharmacologic significance. We describe here the cloning of a murine cMOAT cDNA isolated from mouse liver. The open reading frame of this cDNA incorporates 4627 nucleotides encoding 1309 amino acids with 77.5% and 86.7% identity with the human and rat encoded amino acids, respectively. Northern blotting showed that the expression of cMOAT mRNA occurs primarily in mouse liver in the form of two variants with approximately 5.6 and 7.8 kb of sequence each. cMOAT mRNA was also detected in mouse kidney at a low level but was not detected in other mouse organs or tumors except the Hep 1-6 murine hepatoma where expression was also in the form of the same two mRNA variants.  相似文献   

12.
13.
14.
15.
柽柳金属硫蛋白基因的克隆及序列分析   总被引:2,自引:0,他引:2  
张艳  杨传平  王玉成 《植物研究》2007,27(3):293-296
用木麻黄(Casuarina glauca)的金属硫蛋白基因(metallothionein 1)氨基酸序列对柽柳ESTs序列本地数据库进行tBlastn检索,获得了柽柳金属硫蛋白基因全长cDNA序列,去除polyA后该基因全长366 bp,其中5′非翻译区97 bp,3′非翻译区59 bp,开放读码框(ORF)长210 bp,编码70 个氨基酸组成的多肽,蛋白分子量为6.793 kD,理论等电点为4.99,含10个Cys,集中分布在肽链的N端和C端。BlastP同源性分析表明该基因与花生同源性最高,与小豆同源性最低。该基因的EST序列在GenBank登录(登录号:CV792539)。  相似文献   

16.
报道编码牛 Ig G高亲和力受体 ( bovine Ig G Fc receptor I,bo FcγR )的全长序列 .从牛肺巨噬细胞 c DNA文库中克隆的该片段全长 1 .4kb,其中的 ORF为 1 0 50 bp,共编码包括信号肽、胞外域、穿膜区和胞内区在内的 349个氨基酸 ,含有 5个潜在的 N-连接糖基化位点 .与人和鼠的 Ig G高亲和力受体 ( hu FcγR 和 mo FcγR )相比 ,其核苷酸同源性分别为 80 %和 69% ,氨基酸同源性分别为 66%和 55% .研究表明 ,人、牛和鼠的 3种 Ig G高亲和力受体的单体 Ig G结合域高度保守  相似文献   

17.
Using 3′ and 5′ rapid amplification of cDNA ends (RACE) techniques, the full-length cDNA sequence of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated to AnMan5A), was identified from the total RNA. The cDNA sequence was 1417 bp in length, harboring 5′- and 3′-untranslated regions, as well as an open reading frame (ORF) which encodes a 21-aa signal peptide, a 17-aa propeptide and a 345-aa mature peptide. Based on the topology of the phylogenetic tree of β-mannanases from glycoside hydrolase (GH) family 5, the AnMan5A belongs to the subfamily 7 of the GH family 5. Its 3-D structure was modeled by the bitemplate-based method using both MODELLER 9.9 and SALIGN programs, based on the known β-mannanase crystal structures of Trichoderma reesei (1QNO) and Lycopersicon esculentum (1RH9) from the GH family 5. In addition, the complete DNA sequence of the Anman5A was amplified from the genomic DNA using the pUCm-T vector-mediated PCR and conventional PCR methods. The DNA sequence was 1825 bp in length, containing a 5′-flanking regulatory region, 2 introns and 3 exons when compared with the full-length cDNA.  相似文献   

18.
Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4’s intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.  相似文献   

19.
《Gene》1997,184(2):163-167
Mouse Ocp2-rs2 maps to chromosome 11 and encodes an 18.6 kDa peptide abundantly expressed in the organ of Corti. We show that sequences similar to murine Ocp2-rs2 are found on human chromosomes 4p16.2-4p14, 5p13-5q35.2, 7pter-q22, 10 and 12p13-12qter as revealed by Southern blot analyses of human/rodent somatic cell hybrids. A fetal human inner ear cDNA library was screened with a cloned 254 bp PCR product of murine Ocp2-rs2. One of two human cDNA clones (CM1) was sequenced from the 5′ end that begins with murine Ocp2-rs2 codon 14 through the stop codon and 258 nucleotides of 3′-UTR and was found to have the identical deduced amino acid sequence to Ocp2-rs2. Based on the sequence in the 3′-UTR of CM1, a PCR primer pair was synthesized and used to confirm that a human homologue of Ocp2-rs2, designated OCP2 and expressed in the developing human inner ear, is localized to 5q22-5q35.2. Other OCP2-like sequences located on chromosomes 4p16.2-4p14, 7pter-q22 and 12p13-12qter (but not the chromosome 10 OCP2-like sequence) will PCR amplify the expected size product at a lower annealing temperature using the OCP2 3′-UTR PCR primers indicating that there may be a human OCP2 gene family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号