首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

2.
Two NNS tridentate Schiff base ligands of 2-benzoylpyridine S-methyldithiocarbazate (HL1) and 2-benzoylpyridine S-phenyldithiocarbazate (HL2) and their transition metal complexes [Cu2(L1)2(CH3COO)](ClO4) (1), [Zn2(L1)2(ClO4)2] (2), [Zn(L2)2](3) have been prepared and characterized by elemental analysis, IR, MS, NMR and single-crystal X-ray diffraction studies. In the solid state, each of two Schiff bases remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. Under similar prepared conditions, three new complexes showed distinctly different coordination modes depending on their coordinating preferences. Each copper atom in S-bridged dinuclear complex [Cu2(L1)2(CH3COO)](ClO4) (1) is surrounded by five donor atoms in a square-pyramidal fashion (4 + 1). [Zn2(L1)2(ClO4)2] (2) is a dimer in which each zinc atom adopts a seven-coordinate distorted pentagonal bipyramidal geometry, while mononuclear [Zn(L2)2] (3) has octahedral coordination geometry. Biological studies, carried out in vitro against selected bacteria, fungi, and K562 leukaemia cell line, respectively, have shown that different substituted groups attached at the dithiocarbazate moieties and metals showed distinctive differences in the biological property. Zinc(II) complexes 2 and 3 could distinguish K562 leukaemia cell line from normal hepatocyte QSG7701 cell line. Effect of the title compounds on Mitochondria membrane potential (MMP) and PI-associated fluorescence intensity in K562 leukaemia cell line are also studied. The title compounds may exert their cytotoxicity activity via induced loss of MMP.  相似文献   

3.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

4.
A series of [Cu(I)(2,2′-biquinoline)(L)](ClO4) complexes (L = bis(diphenylphosphino)methane (bppm), 1,2-bis(diphenylphosphino)ethane (bppe), 1,4-bis(diphenylphosphino)butane (bppb)) have been synthesized and characterized by elemental analysis, conductivity, ESI-mass, NMR and UV-Vis spectroscopies, cyclic voltammetry, X-ray diffraction ([Cu(I)(2,2′-biquinoline)(bppe)](ClO4)) and DFT calculations. These compounds are monometallic species in a distorted tetrahedral arrangement, in contrast with related compounds found as dinuclear according to diffraction studies. The spectroscopic properties are not directly correlated with the length of alkyl chain bridge between the bis-diphenylphosphine groups. In this way, the chemical shift of some 2,2′-biquinoline protons and the metal to ligand charge transfer (Cu to 2,2′-biquinoline) follows the order [Cu(2,2′-biquinoline)(bppm)](ClO4), [Cu(2,2′-biquinoline)(bppb)](ClO4), [Cu(2,2′-biquinoline)(bppe)](ClO4). The same dependence is followed by the potentials to Cu(II)/Cu(I) couple. These results are discussed in terms of inter-phosphorus alkane chain length and tetrahedral distortions on copper.  相似文献   

5.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

6.
A di-N-functionalized 14-membered tetraaza macrocycle, [H4L3](ClO4)2 (L3 = 1,8-bis(2-carboxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane), has been synthesized by acid hydrolysis of 1,8-bis(2-cyanoethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L2). The copper(II) complexes [CuL2](ClO4)2 and [Cu(H2L3)](ClO4)2 were prepared and characterized. The complex [Cu(H2L3)]2+ readily reacts with methanol to yield [CuL4]2+ (L4 = 1,8-bis(2-carbomethoxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane). The N-CH2CH2COOH groups of [Cu(H2L3)](ClO4)2 are not coordinated to the metal ion in the solid state but are involved in coordination in various non-aqueous solvents or in aqueous solutions of pH ? 1.0. Interestingly, [CuL4](ClO4)2 exists as two stable structural isomers, 1 (the pendant ester groups are not involved in coordination) and 2 (one of the two ester groups is coordinated to the metal ion), in the solid state; the two isomers can be prepared selectively by controlling ionic strength of a methanol solution of the complex. Crystal structures and coordination behaviors of the two isomers are described. The di-N-cyanoethylated macrocyclic complex [CuL2](ClO4)2 is rapidly decomposed in 0.1 M NaOH solution even at room temperature. On the other hand, [Cu(H2L3)](ClO4)2 and [CuL4](ClO4)2 are quite inert against decomposition under similar basic conditions. In acidic or basic aqueous solutions, [CuL4]2+ is hydrolyzed to [Cu(H2L3)]2+ or [CuL3].  相似文献   

7.
A series of new cobalt(III) complexes were prepared. They are [CoL1(py)3]·NO3 (1), [CoL2(bipy)(N3)]·CH3OH (2), [CoL3(HL3)(N3)]·NO3 (3), and [CoL4(MeOH)(N3)] (4), where L1, L2, L3 and L4 are the deprotonated form of N′-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N′-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N′-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2′-bipyridine. The complexes were characterized by infrared and UV–Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L−1, respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L−1. While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.  相似文献   

8.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

9.
New hetero-functionalized macrocyclic complexes [CuL2](ClO4)2 (I) and [CuL3](ClO4)2 (II) bearing one N-CH2CONH2 or one N-CH2C(NH)NH(CH2)2CH3 pendant arm as well as one N-CH2CN group have been prepared by the selective reaction of water or n-propylamine with one of the two N-CH2CN groups in [CuL1](ClO4)2 (L1 = 2,13-bis(cyanomethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane). The complex [CuL4](ClO4)2 (III) bearing both N-CH2CONH2 and N-CH2C(NH)NH(CH2)2CH3 pendant arms can be prepared by either the reaction of I with n-propylamine or the hydrolysis of II. The N-CH2CONH2 and/or N-CH2C(NH)NH(CH2)2CH3 groups of I, II, and III are coordinated to the metal ion. The crystal structure of II shows that the complex has distorted square-pyramidal coordination polyhedron with a considerably strong apical Cu-N (N-CH2C(NH)NH(CH2)2CH3) bond (2.101(6) Å). The addition of HClO4 (?0.01 M) to an acetonitrile (or DMSO) solution of II or III produces [Cu(HL3)](ClO4)3 (IIa) or [Cu(HL4)](ClO4)3 (IIIa), showing that the N-CH2C(NH)NH(CH2)2CH3 pendant arm of each complex is readily protonated in the non-aqueous solvent; the resulting N-CH2C()NH(CH2)2CH3 group of IIa or IIIa is not involved in coordination. However, the N-CH2C(NH)NH(CH2)2CH3 group of II is not protonated even in ?1.0 M HClO4 aqueous solution. In the case of III, most of the complex exists as the protonated form [Cu(HL4)]3+ in ?0.1 M HClO4 aqueous solutions.  相似文献   

10.
 The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron, generating the phenoxyl-copper(II) species [CuII(L1H)]+·, [Cu(L2H)]+·, [CuII(L1H2)]2+·, and [CuII(L2H2)]2+·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO). Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species. Received: 10 February 1997 / Accepted: 7 April 1997  相似文献   

11.
The complexes [Mn(L1)(tcc)] (1), [Mn(L2)(tcc)] · H2O · 0.5CH3OH (2), [Mn(L3)(tcc)] · CH2Cl2 (3), [Mn(L4)(tcc)] · 1.5CH2Cl2 (4), [Mn(L5)(tcc)] (5), and (HN(C2H5)3)[Mn(L6)(tcc)] · CH2Cl2 (6) have been synthesized using the ligands HL1 (2-[(bis(pyridin-2-ylmethyl)amino)methyl]phenol), HL2 (2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl] phenol), HL3 (2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol), HL4 (2-[(bis(pyridin-2-ylmethyl)amino)methyl]-4-bromophenol), HL5 (2-[(bis(pyridin-2-ylmethyl)amino)methyl]-6-methoxyphenol) and H2L6 ([(bis(2-hydroxy-5-nitrobenzyl))(pyridin-2-ylmethyl)]amine) and characterized by X-ray crystallography, mass spectrometry, IR, UV-Vis spectroscopy, cyclic voltammetry, and elemental analysis. Compounds 1 and 6 crystallize in the monoclinic space groups P21/n and P21/c, respectively, whereas the crystal structures of complexes 2, 3, and 4 were solved in the triclinic space group . Complex 5 crystallizes in the orthorhombic space group P212121. Complexes 1-6 are structural related to the proposed active site of intradiol cleaving catechol dioxygenase exhibiting a distorted octahedral N3O3 (1-5) and N2O4 (6) donor set, respectively. Complexes 1-6 can be regarded as structural manganese analogous for substituted forms of iron-containing intradiol cleaving catechol dioxygenases, where the substrate tetrachlorocatechol (tcc) is asymmetrically bound to the metal center.  相似文献   

12.
Four new binucleating ligands featuring a hydroxytrimethylene linker between two coordination sites (1,3-bis{N-[3-(dimethylamino)propyl]-N-methylamino}propan-2-ol, HL1; 1,3-bis{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL2; 1,3-bis[bis(2-methoxyethyl)amino]propan-2-ol, HL3; and 1-bis[(2-methoxyethyl)amino]-3-{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL4) were synthesized, along with the corresponding zinc complexes. The structures of three dinuclear zinc complexes ([Zn2L1(μ-CH3COO)2]BPh4 (1), [Zn2L3(μ-CH3COO)2]BPh4 (3), and [Zn2L4(μ-CH3COO)(CH3COO)(EtOH)]BPh4 (4)) and a tetranuclear zinc complex ({[Zn2L2(μ-CH3COO)]2(μ-OH)2}(BPh4)2 (2)) were revealed by X-ray crystallography. Hydrolysis of tris(p-nitrophenyl)phosphate (TNP) by these zinc complexes in an acetonitrile solution containing 5% Tris buffer (pH 8.0) at 30 °C was investigated spectrophotometrically and by 31P NMR. Although zinc complexes 1, 3, and 4 did not show hydrolysis activity, the tetranuclear zinc complex 2, containing μ-hydroxo bridges, was capable of hydrolyzing TNP. This suggests that the hydroxide moiety in the complex may have an important role in the hydrolysis reaction.  相似文献   

13.
A series of flexible multidentate ligands containing N,P-donor, 2-[N-(diphenylphosphino)methyl]amino-pyridine (L1), 2-[N-bi-(diphenylphosphino) methyl]amino-pyridine (L2), 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L3) and 4-[(N-diphenylphosphino)methyl]amino-pyridine) (L4) have been synthesized. The mono- and dinuclear cyclometalated platinum(II) complexes [Pt(C^N^N)L1]ClO4 (HC^N^N = 6-phenyl-2,2′-bipyridine), [Pt2(C^N^N)2L1](ClO4)2, [Pt2(C^N^N)2L2](ClO4)2, [Pt(C^N^N)L3]ClO4 and [Pt2(C^N^N)2L4](ClO4)2 were prepared and their structures determined by X-ray crystal analysis. These complexes exhibit long-lived bright orange emissions ranging from 560 to 610 nm in the solid state at room temperature. In solution, dinuclear complexes have emissions with higher quantum yields than mononuclear complexes. This can be attributed to intramolecular interaction of free functional group with Pt(II) at axial position, resulting in the quenching of phosphorescence for platinum(II) complexes in the 3MLCT excited state.  相似文献   

14.
The orange-red colored complexes of the type [Fe(LSB)Cl3], 1, have been synthesized in excellent yields by reacting FeCl3·6H2O with LSB in methanol. Here, LSB is (2-(ethylthio)-N-(pyridin-2-ylmethyl)ethanamine), (LSB1) and (2-(benzylthio)-N-(pyridin-2-ylmethyl)ethanamine) (LSB2). Similarly, FeCl3·6H2O reacted with 2-(((2-(ethylthio) ethyl) (pyridin-2-ylmethyl)amino)methyl)phenol (HL1), 2-(((2-(ethylthio)ethyl)(pyridin-2 ylmethyl)amino)methyl)-4-nitrophenol (HL2), 4-chloro-2-(((2-(ethylthio)ethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (HL3), 2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl) amino)methyl)phenol (HL4), 2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl)amino)methyl) -4-nitrophenol (HL5), and 4-chloro-2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl)amino) methyl)phenol (HL6) to give dichloro complexes of the type [Fe(L)Cl2], 2. The solid and solution structure of the complexes, as well as their properties, were probed using X-ray diffraction, spectroscopic and electrochemical methods. The Mössbauer spectral study at 80 K for complexes reveals the existence of (III) oxidation state and high-spin state of the metal center in the complex. Dioxygenase activity of the complexes has been studied and both 1 and 2 have been found to display the intradiol-cleaving pathway. However, no extradiol cleavage products have been isolated.  相似文献   

15.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

16.
Three new coordination complexes, [Cu(L1)(H2O)] (1), [Ni(L2)2]·CH3CN (2) and [Co(HL3)(L3)] (3) [where H2L1, N,N′-bis(3-methoxysalicylidenimino)-1,3-diamino-propane; HL2, 2-((E)-(1,3-dihydroxy-2-methylpropan-2-ylimino)methyl)phenol; H2L3, 2-((E)-(2-hydroxyethylimino)methyl)-4-bromophenol] have been synthesized and systematically characterized by elemental analyses, FT-IR, electronic spectroscopy, cyclic voltammetry and thermogravimetric analyses. Single crystal X-ray diffraction studies confirm that the metal center in complex 1 has distorted square-pyramidal geometry while it is distorted octahedral in the other two complexes. In all the complexes O-H?O hydrogen bondings assemble the molecular units leading to ordered supramolecular architectures. While both complexes 1 and 2 form infinite one-dimensional arrays through the self organisation of hydrogen bonded ring motifs, complex 3 is a unique star-shaped cyclic hexamer generated through intermolecular hydrogen bonding.  相似文献   

17.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

18.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

19.
Copper(II) complexes of a series of linear pentadentate ligands containing two benzimidazoles, two thioether sulfurs and a amine nitrogen, viz. N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}amine(L1), N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}N-methylamine (L2), 2,6-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}pyridine(L3), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}amine (L4), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}N-methylamine (L5) and 2,6-bis{4-(2″-benzimidazolyl)-2-thiabutyl}-3pyridine (L6) have been isolated and characterized by electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes, [Cu(L1)](BF4)2 (1) and [Cu(L2)](BF4)2 (4) have been structurally characterized by X-ray crystallography. The coordination geometries around copper(II) in 1 and 4 are described as trigonal bipyramidal distorted square based pyramidal geometry (TBDSBP). The distorted CuN3S basal plane in them is comprised of amine nitrogen, one thioether sulphur and two benzimidazole nitrogens and the other thioether sulfur is axially coordinated. The ligand field spectra of all the complexes are consistent with a mostly square-based geometry in solution. The EPR spectra of complexes [Cu(L1)](BF4)2 (1), [Cu(L1)](NO3)2 (2), [Cu(L2)](BF4)2 (4) and [Cu(L3)](ClO4)2 (6) are consistent with two species indicating the dissociation/disproportionation of the complex species in solution. All the complexes exhibit an intense CT band in the range 305-395 nm and show a quasireversible to irreversible CuII/CuI redox process with relatively positive E1/2 values, which are consistent with the presence of two-coordinated thioether groups. The addition of N-methylimidazole (mim) replaces the coordinated thioether ligands in solution, as revealed from the negative shift (222-403 mV) in the CuII/CuI redox potential. The present study reveals that the effect of incorporating an amine nitrogen donor into CuN2S2 complexes is to generate an axial copper(II)-thioether coordination and also to enforce lesser trigonality on the copper(II) coordination geometry.  相似文献   

20.
Multidentate ligands containing tripodal pyridyl-amine moieties tethered to a carboxylate group by alkyl linkers of varying lengths were synthesized to obtain a series of water-soluble ligands to elucidate the effects of the differing coordination environments on the properties of the resulting metal complexes. These new, water-soluble ligands, [bis-(2-pyridin-2-yl-ethyl)-amino]-acetic acid (L1), 3-[bis-(2-pyridin-2-yl-ethyl)-amino]-propionic acid (L2), 4-[bis-(2-pyridin-2-yl-ethyl)-amino]-butyric acid (L3), and 6-[bis-(2-pyridin-2-yl-ethyl)-amino]-hexanoic acid (L4), were treated with copper(II) perchlorate hexahydrate to yield the corresponding Cu(II) complexes, which have all been characterized by X-ray crystallography. L1 binds Cu(II) to form the tetrameric complex {[Cu(μ-1)][ClO4] · 4H2O}4 (1) in the solid state, whereas the Cu(II) complexes of ligands L2-L4 form long-chain one-dimensional polymeric complexes {[Cu(μ-L2)][ClO4] · H2O}n (2), {[Cu(μ-L3)][ClO4] · H2O}n (3), and {[Cu(μ-L2)][ClO4]  · H2O}n (4), respectively, in the solid state. Complexes 1-4 dissolved in 10% (v/v) CH3CN aqueous solution were tested for their ability to promote the hydrolysis of the activated ester compound 4-nitrophenylacetate (NA), with 3 being the most active complex and 1 being the least active, possibly due to differences in the ability of the carboxylate moiety to act as either a general base or a nucleophile in the hydrolysis of NA as dictated by the tether length. The pKa values of the copper-bound aquo ligands in solution were measured by spectrophotometric titration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号